基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真

简介: 本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含操作步骤视频)

```for t=1:Iters
t
for i=1:Num
[pa(i)] = func_obj(xwoa(i,:));
Fitout = pa(i);
%更新
if Fitout < woa_get
woa_get = Fitout;
woa_idx = xwoa(i,:);
end
end
%调整参数
c1 = 2-t((1)/300);
c2 =-1+t
((-1)/300);
%位置更新
for i=1:Num
r1 = rand();
r2 = rand();
K1 = 2c1r1-c1;
K2 = 2r2;
l =(c2-1)
rand + 1;
rand_flag = rand();

    for j=1:D
        if rand_flag<0.5   
           if abs(K1)>=1
              RLidx    = floor(Num*rand()+1);
              X_rand   = xwoa(RLidx, :);
              D_X_rand = abs(K2*X_rand(j)-xwoa(i,j)); 
              xwoa(i,j)= X_rand(j)-K1*D_X_rand;     
           else
              D_Leader = abs(K2*woa_idx(j)-xwoa(i,j)); 
              xwoa(i,j)= woa_idx(j)-K1*D_Leader;    
           end
        else
            distLeader = abs(woa_idx(j)-xwoa(i,j));
            xwoa(i,j)  = distLeader*exp(2*l).*cos(l.*2*pi)+woa_idx(j);
        end
        %目标函数更新
        if xwoa(i,j)>=tmps(j,2) 
           xwoa(i,j)=tmps(j,2);
        end
        if xwoa(i,j)<=tmps(j,1) 
           xwoa(i,j)=tmps(j,1);
        end
    end
end

end

...........................................................

%训练
[net,INFO] = trainNetwork(Ptrain_reshape, t_train, CNN_GRN_SAM, opt);
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on

subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
%数据预测

tmps = predict(net, Ptest_reshape );
T_pred = mapminmax('reverse', tmps', vmax2);
figure
plot(T_test, 'r')
hold on
plot(T_pred, 'b-x')
legend('真实值', '预测值')
grid on
%%试集结果
figure
plotregression(T_test,T_pred,['回归']);
ERR=mean(abs(T_test-T_pred));
ERR
save R2.mat Rerr Rlos T_test T_pred ERR
186

```

4.算法理论概述
时间序列预测在众多领域中都具有重要的应用价值。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。

网络结构

CNN-GRU-SAM 网络由卷积层、GRU 层、自注意力机制层和全连接层组成。

  卷积层用于提取时间序列数据的局部特征;GRU 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。

算法流程

    WOA即Whale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed于2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。

1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。

2.初始化种群:随机生成一组种群,每个个体代表一组网络参数。

3.计算适应度值:对于每个个体,将其对应的网络参数代入 CNN-GRU-SAM 网络中,对训练数据进行预测,并计算预测结果与真实值之间的误差,作为该个体的适应度值。

4.更新个体信息。

5.重复步骤 3 和 4,直到满足停止条件(如达到最大迭代次数或适应度值小于某个阈值)。6.输出最优网络参数:将全局最优位置对应的网络参数作为最优网络参数,代入 CNN-GRU-SAM 网络中,对测试数据进行预测,得到最终的预测结果。

相关文章
|
2月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
166 5
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
110 0
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
2月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 自然语言处理 算法
基于改进鲸鱼优化算法的微网系统能量优化管理研究(Matlab代码实现)
基于改进鲸鱼优化算法的微网系统能量优化管理研究(Matlab代码实现)
109 1
|
2月前
|
算法 安全 数据可视化
基于多目标鲸鱼优化算法(NSWOA)求解地铁隧道竖向位移和成本的双目标求解(以铁道科学报与工程文章为例)研究(Matlab代码实现)
基于多目标鲸鱼优化算法(NSWOA)求解地铁隧道竖向位移和成本的双目标求解(以铁道科学报与工程文章为例)研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
169 0
|
2月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
467 0
|
2月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
206 0
|
3月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
135 0

热门文章

最新文章