基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真

简介: 本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
自编码器是一种特殊的神经网络结构,主要由编码器(Encoder)和解码器(Decoder)两部分组成。

5.png

自编码器的目标是最小化重构误差,常用的重构误差函数是均方误差(MSE),定义为:

6.png

  自编码器通常采用基于梯度下降的算法进行训练,如随机梯度下降(SGD)或其变种 Adagrad、Adadelta、Adam 等。
AI 代码解读

7.png

   基于 AutoEncode 的端到端无线通信系统的一个重要特点是可以进行端到端的训练。整个系统从发射端的原始信源数据到接收端的信源数据恢复被视为一个整体,通过最小化接收端恢复的信源数据  与原始信源数据  之间的误差来训练系统的参数(包括发射端自编码器的参数 、接收端自编码器的参数  以及信道编码、均衡等模块的参数,如果它们是可训练的)。在训练过程中,通过反向传播算法计算误差函数关于各个参数的梯度,并使用优化算法(如 Adam 等)更新参数,以逐步减小误差,提高系统的性能。

  基于 AutoEncode 自编码器的端到端无线通信系统通过将自编码器技术与无线通信的各个环节深度融合,利用端到端训练和多种优化策略,能够在复杂的无线通信环境中实现高效、可靠的通信,为未来无线通信技术的发展提供了一种创新的解决方案。
AI 代码解读

3.MATLAB核心程序

opts = trainingOptions('adam', ...
  'InitialLearnRate',0.0015, ...
  'MaxEpochs',epochs, ...
  'MiniBatchSize',100*2^k, ...
  'Shuffle','every-epoch', ...
  'ValidationData',{dat_valid,Lab_valid}, ...
  'LearnRateSchedule', 'piecewise', ...
  'LearnRateDropPeriod', 10, ...
  'LearnRateDropFactor', 0.08, ...
  'Plots', 'training-progress', ...
  'Verbose',false);

%训练
[trainedNet,info] = trainNetwork(dat_train,Lab_train,AE_layers,opts);

figure
subplot(211);
validAcc = info.ValidationAccuracy;
idx = find(~isnan(validAcc));
semilogy(idx, validAcc(idx), 'b-o')
ylabel('Accuracy')
grid on
xlabel('Iteration')
subplot(212);
validLoss = info.ValidationLoss;
idx = find(~isnan(validLoss));
semilogy(idx, validLoss(idx), 'b-o')
ylabel('Loss')
grid on


%编码过程
AE_Tnet = func_AE_encode(trainedNet);
%解码过程
AE_Rnet = func_AE_decode(trainedNet);

%误码率输出
nums = 100;
BLER = zeros(size(SNRs));
for ij = 1:length(SNRs)

  Nerror    = 0;
  cnts      = 0;
  while (Nerror < 200)
    [ij,Nerror,cnts]  
    temps           = randi([0 M-1],nums,1);
    %编码
    din_AE         = func_AEin(temps,AE_Tnet,M);
    %信道
    din_AE_channel = awgn(din_AE,SNRs(ij),'measured');
    %解码
    dout_AE        = func_AEout(din_AE_channel,AE_Rnet,n);

    Nerror         = Nerror + sum(temps ~= dout_AE);
    cnts           = cnts + 1;
  end
  BLER(ij) = Nerror / (cnts*nums);
end


figure
semilogy(SNRs,BLER,'b-o')
grid on
xlabel('SNR(dB)')
ylabel('ber')


if epochs==1
   save R2_1.mat SNRs BLER
end
if epochs==2
   save R2_2.mat SNRs BLER
end
if epochs==3
   save R2_3.mat SNRs BLER
end
if epochs==4
   save R2_4.mat SNRs BLER
end
if epochs==5
   save R2_5.mat SNRs BLER
end
0X_074m
AI 代码解读
目录
打赏
0
65
65
1
240
分享
相关文章
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
介绍频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术
在无线通信领域,专业术语是理解技术的关键。本文详细介绍了频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术,还涵盖了信号传播、信道容量、信噪比等深入概念。通过本文,你将掌握无线技术的核心知识,成为半个无线专家。
633 4
Massive MIMO技术在5G中的应用:开启无线通信的新篇章
Massive MIMO技术在5G中的应用:开启无线通信的新篇章
471 2
|
8月前
|
【2022年无线通信和与物联网专场】北京大学焦秉立教授--同频同时全双工技术现状和展望
北京大学焦秉立教授在2022年无线通信和物联网专场中对同频同时全双工技术现状和未来展望的介绍,涵盖了全双工技术在5G移动通信中的应用及其对提高频谱效率和传输效率的重要性。
108 2

热门文章

最新文章