【车道线检测】基于计算机视觉实现车道线视频检测附matlab代码

简介: 【车道线检测】基于计算机视觉实现车道线视频检测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

智能车辆(Ⅳ)是近年来各国在智能交通中潜心研究的一个重要领域,其 中,基于视觉的结构化道路环境识别研究成为研究的重点。结构化道路环境的检 测与识别的一个主要方面就是对路面中的车道线进行检测与识别,确定车道的边 界与类型,为智能车辆提供保持车道行驶和变换车道行驶必须的车道信息,使智 能车辆能实现平稳、安全的自动驾驶。 本文主要针对结构化道路图像的特点,对如何有效地提取道路图像中的车道 线信息做了深入研究。

⛄ 部分代码

% Get video frame

v = VideoReader('../Input/project_video.mp4');


% Output video writer

outputVideo = VideoWriter('../Output/Result.mp4','MPEG-4');

outputVideo.FrameRate = v.FrameRate;

open(outputVideo)


counter=0;


% To find the direction it turns

average_slope_list=[];

plot([left_p1,left_p2],[edge_bottom,edge_top],'LineWidth',2,'Color','green');

   

   % Plot longest right line

   plot([right_p1,right_p2],[edge_bottom,edge_top],'LineWidth',2,'Color','green');

   

   filler=fill([left_p1,left_p2,right_p2,right_p1],[edge_bottom,edge_top,edge_top,edge_bottom],'red');

   alpha(filler,.5)

   hold off

   drawnow

   

   % Write to video file

   writeVideo(outputVideo,getframe)

end


% Finalize the video

close(outputVideo)

⛄ 运行结果

⛄ 参考文献

[1] 江漫徐艳吕义付张乾.基于计算机视觉的车道线检测技术研究进展[J].信息技术与信息化, 2022(11):21-24.

[2] 张宇斌.基于计算机视觉的车道线检测算法研究[D].桂林电子科技大学,2016.DOI:10.7666/d.D01093672.

[3] 董莹莹.基于机器视觉的车辆和车道线检测研究[D].湖南大学,2019.

[4] 秦敏.基于机器视觉的车道线检测与追踪系统的研究[D].中国海洋大学[2023-06-12].

[5] 张云港.基于视觉的车道线检测算法[D].云南师范大学[2023-06-12].DOI:CNKI:CDMD:2.2005.128436.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
4月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
2月前
|
机器学习/深度学习 传感器 算法
行人闯红灯检测:基于计算机视觉与深度学习的智能交通解决方案
随着智能交通系统的发展,传统的人工交通违法判断已难以满足需求。本文介绍了一种基于计算机视觉与深度学习的行人闯红灯自动检测系统,涵盖信号灯状态检测、行人检测与跟踪、行为分析及违规判定与报警四大模块,旨在提升交通管理效率与安全性。
|
4月前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
4月前
|
人工智能 计算机视觉
AI计算机视觉笔记十五:编写检测的yolov5测试代码
该文为原创文章,如需转载,请注明出处。本文作者在成功运行 `detect.py` 后,因代码难以理解而编写了一个简易测试程序,用于加载YOLOv5模型并检测图像中的对象,特别是“人”类目标。代码实现了从摄像头或图片读取帧、进行颜色转换,并利用YOLOv5进行推理,最后将检测框和置信度绘制在输出图像上,并保存为 `result.jpg`。如果缺少某些模块,可使用 `pip install` 安装。如涉及版权问题或需获取完整代码,请联系作者。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
259 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
机器学习/深度学习 并行计算 算法
Ebsynth:利用图像处理和计算机视觉的视频风格转换技术工具
EbSynth 是一款基于视频风格转换技术的工具,专注于将静态艺术风格应用到视频中的每一帧,使视频具有独特的艺术效果。它利用图像处理和计算机视觉技术,将用户提供的参考图像或绘画风格转换为视频效果。
176 2
|
5月前
|
机器学习/深度学习 算法 大数据
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
本文提供了2023年MathorCup高校数学建模挑战赛大数据竞赛赛道A的解决方案,涉及基于计算机视觉的坑洼道路检测和识别任务,包括数据预处理、特征提取、模型建立、训练与评估等步骤的Python代码解析。
97 0
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
125 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
机器学习/深度学习 人工智能 数据处理
AI计算机视觉笔记一:YOLOV5疲劳驾驶行为检测
如何使用云服务器AutoDL进行深度学习模型的训练,特别是针对YOLOV5疲劳驾驶行为训练检测
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
153 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现