基于深度学习的人员指纹身份识别算法matlab仿真

简介: 基于深度学习的人员指纹身份识别算法matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
指纹识别技术是一种生物特征识别技术,它通过分析人类手指末端皮肤表面的纹路特征来进行身份认证。深度学习是机器学习的一个分支,特别适用于处理大规模高维数据,并在图像识别、语音识别等领域取得了显著成果。

3.1 指纹图像预处理与特征提取
首先,指纹图像需要经过一系列预处理步骤,包括灰度化、二值化、细化、去噪声等,以得到清晰的指纹脊线图。然后,传统方法中通常使用 minutiae 特征(如端点、分叉点)作为关键特征进行提取。而在深度学习框架下,神经网络能够直接从原始或预处理后的指纹图像中自动生成高级抽象特征:

7cb972cf6f7584664e1cb0c07130b00e_82780907_202403121924160252299168_Expires=1710243256&Signature=UNFMw79DTGfPYXsWBrZp9RCcMIU%3D&domain=8.png

3.2 卷积神经网络架构
一个典型的用于指纹识别的深度学习模型可能包含多个卷积层(Convolutional Layer)、池化层(Pooling Layer)、归一化层(Normalization Layer)以及全连接层(Fully Connected Layer)。卷积层通过对图像进行滤波操作来提取局部特征:

1733ccc4ca0ede3d4867dc02a2978f84_82780907_202403121924070097544354_Expires=1710243247&Signature=I8bnhZqr0hplKsdOnYhmr3Psuj0%3D&domain=8.png

3.3 特征编码与匹配
深度学习指纹识别的核心在于利用网络自动学习到的特征进行身份比对。网络的最后几层通常会形成一个紧凑且可比对的特征向量。对于两个指纹图像,其对应的特征向量可以计算相似度得分,如余弦相似度:

139548a750aef79fc1285d00c31559a7_82780907_202403121922530579434291_Expires=1710243173&Signature=t%2F1QOWAsmrBNBYyagwuIU%2BQBM9Q%3D&domain=8.png

3.4 损失函数与训练
为了训练这样的网络,通常会选择一种适合监督学习任务的损失函数,例如 triplet loss 或者交叉熵损失。对于一对正样本(同一人的不同指纹)和负样本(不同人的指纹),triplet loss 可以表述为:

24eb0aea78abeb2d03b248cb3eb43611_82780907_202403121922440469229471_Expires=1710243164&Signature=baasoK3pblPlv2ABy614%2FFR346I%3D&domain=8.png

    通过梯度下降或其他优化算法调整网络参数θ ,使得相同个体的指纹特征尽可能接近,而不同个体的指纹特征尽可能远离。

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
load gnet.mat% 载入预训练的GoogLeNet模型

for ij = 1:15
Dataset=[];
% 创建图像数据存储对象,包括图像文件夹,标签等信息
Dataset         = imageDatastore(['dataset\man',num2str(ij),'\'], 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
Dataset.ReadFcn = @(loc)imresize(imread(loc),[224,224]);% 设置 im 的读取函数,将读取的图像进行缩放,大小为 [224,224]

% 对测试集进行分类预测
[Predicted_Label, Probability] = classify(net, Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Dataset.Labels);
accuracy
figure

for i = 1:8
    subplot(2,4,i)
    I = readimage(Dataset, i);% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(i);

    title(['人员信息:',label]);
end


end
相关文章
|
3月前
|
算法
基于MPPT算法的光伏并网发电系统simulink建模与仿真
本课题基于MATLAB/Simulink搭建光伏并网发电系统模型,集成PV模块、MPPT算法、PWM控制与并网电路,实现最大功率跟踪与电能高效并网。通过仿真验证系统在不同环境下的动态响应与稳定性,采用SVPWM与电流闭环控制,确保输出电流与电网同频同相,满足并网电能质量要求。
|
4月前
|
算法 机器人
基于SOA海鸥优化算法的PID控制器最优控制参数计算matlab仿真
本课题研究基于海鸥优化算法(SOA)优化PID控制器参数的方法,通过MATLAB仿真对比传统PID控制效果。利用SOA算法优化PID的kp、ki、kd参数,以积分绝对误差(IAE)为适应度函数,提升系统响应速度与稳定性。仿真结果表明,SOA优化的PID控制器在阶跃响应和误差控制方面均优于传统方法,具有更快的收敛速度和更强的全局寻优能力,适用于复杂系统的参数整定。
|
5月前
|
机器学习/深度学习 数据采集 传感器
具有多种最大功率点跟踪(MPPT)方法的光伏发电系统(P&O-增量法-人工神经网络-模糊逻辑控制-粒子群优化)之使用粒子群算法的最大功率点追踪(MPPT)(Simulink仿真实现)
具有多种最大功率点跟踪(MPPT)方法的光伏发电系统(P&O-增量法-人工神经网络-模糊逻辑控制-粒子群优化)之使用粒子群算法的最大功率点追踪(MPPT)(Simulink仿真实现)
424 0
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
3月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
4月前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
269 15
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
4月前
|
传感器 算法
采用SRF算法的分流有源滤波器【并联有源滤波器的仿真电路可降低谐波和无功功率】(Simulink仿真实现)
采用SRF算法的分流有源滤波器【并联有源滤波器的仿真电路可降低谐波和无功功率】(Simulink仿真实现)
120 1
|
4月前
|
存储 算法 数据可视化
基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
本程序基于禁忌搜索算法解决旅行商问题(TSP),旨在寻找访问多个城市的最短路径。使用 MATLAB 2022A 编写,包含城市坐标生成、路径优化及结果可视化功能。通过禁忌列表、禁忌长度与藐视准则等机制,提升搜索效率与解的质量,适用于物流配送、路径规划等场景。
|
4月前
|
算法 Python
粒子群算法对pi控制器进行参数优化,随时优化pi参数以控制直流无刷电机转速(Simulink仿真实现)
粒子群算法对pi控制器进行参数优化,随时优化pi参数以控制直流无刷电机转速(Simulink仿真实现)
175 9

热门文章

最新文章