m基于深度学习的32QAM调制解调系统相位检测和补偿算法matlab仿真

简介: m基于深度学习的32QAM调制解调系统相位检测和补偿算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
随着通信技术的飞速发展,高阶调制格式如32QAM(32-Quadrature Amplitude Modulation,32进制正交幅度调制)在高速数据传输中得到了广泛应用。然而,由于信道失真、噪声干扰等因素,接收端往往面临相位偏移和信号失真等问题。为了解决这些问题,基于深度学习的相位检测和补偿算法应运而生。

2.1 32QAM调制解调原理
在32QAM中,信号是通过同时改变两个正交载波(I路和Q路)的幅度来实现信息编码的。这两个载波的频率相同但相差90度相位。具体过程如下:

比特映射: 输入的6比特流被映射到32个离散的星座点上。每个星座点都有一个对应的二进制序列。

符号生成: 根据映射表,将每组6比特转换为相应的复数符号,这个符号包含有实部(I分量)和虚部(Q分量)。

s=I+jQs = I + jQs=I+jQ

其中,sss 是调制符号,III 和 QQQ 分别代表对应星座点的横纵坐标值。

幅度与相位调制: 通过对基带信号进行上变频并乘以相应的幅度因子,得到最终的模拟调制信号。

2.2 基于深度学习的相位检测和补偿算法
为了解决相位偏移问题,可以采用基于深度学习的相位检测和补偿算法。该算法通常包括两个主要步骤:相位检测和相位补偿。

   相位检测的目标是从接收到的信号中估计出相位偏移量。传统的方法通常基于最大似然估计或最小均方误差准则进行设计,但在复杂信道条件下性能受限。而基于深度学习的方法则能够通过学习大量数据来自动提取特征并进行相位偏移量的估计。

   具体来说,可以采用一个深度神经网络(DNN)来实现相位检测。该网络的输入是接收到的信号样本,输出是估计的相位偏移量。网络的结构可以根据具体任务进行设计,例如可以使用卷积神经网络(CNN)来提取信号的时域特征,或者使用循环神经网络(RNN)来处理序列数据。

   在训练阶段,需要准备大量带有标签的训练数据。标签是真实的相位偏移量,可以通过仿真或实际测量得到。然后,使用反向传播算法等优化方法来训练网络参数,使得网络能够准确地从输入信号中估计出相位偏移量。
   相位补偿的目标是根据估计出的相位偏移量对接收到的信号进行校正,以消除相位偏移的影响。传统的补偿方法通常是通过旋转接收到的信号来实现的。而在基于深度学习的算法中,可以将相位补偿过程集成到神经网络中。

     在得到较为准确的相位估计后,利用该信息对原始接收到的信号进行相位补偿。假设经过深度学习网络得到的相位估计为:



   具体来说,可以在神经网络的输出端添加一个旋转矩阵,该矩阵根据估计出的相位偏移量对接收到的信号进行旋转校正。这样,神经网络的输出就是经过相位补偿后的信号,可以直接用于后续的解调处理。

3.MATLAB核心程序
```for i = 1:length(SNR)
i
for j = 1:10
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1exp(sqrt(-1)phase);

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2*exp(-sqrt(-1)*mean2(offset2));
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('32QAM无相位补偿误码率','32QAM相位补偿误码率');
```

相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
142 55
|
1月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
64 4
|
20天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
110 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
18天前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
32 6
【AI系统】QNNPack 算法
|
18天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
42 5
【AI系统】Im2Col 算法
|
18天前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
30 2
【AI系统】Winograd 算法
|
1天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
33 5
|
22天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
36 4
基于Python深度学习的果蔬识别系统实现
|
8天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
37 3
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。