m基于深度学习的32QAM调制解调系统相位检测和补偿算法matlab仿真

简介: m基于深度学习的32QAM调制解调系统相位检测和补偿算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
随着通信技术的飞速发展,高阶调制格式如32QAM(32-Quadrature Amplitude Modulation,32进制正交幅度调制)在高速数据传输中得到了广泛应用。然而,由于信道失真、噪声干扰等因素,接收端往往面临相位偏移和信号失真等问题。为了解决这些问题,基于深度学习的相位检测和补偿算法应运而生。

2.1 32QAM调制解调原理
在32QAM中,信号是通过同时改变两个正交载波(I路和Q路)的幅度来实现信息编码的。这两个载波的频率相同但相差90度相位。具体过程如下:

比特映射: 输入的6比特流被映射到32个离散的星座点上。每个星座点都有一个对应的二进制序列。

符号生成: 根据映射表,将每组6比特转换为相应的复数符号,这个符号包含有实部(I分量)和虚部(Q分量)。

s=I+jQs = I + jQs=I+jQ

其中,sss 是调制符号,III 和 QQQ 分别代表对应星座点的横纵坐标值。

幅度与相位调制: 通过对基带信号进行上变频并乘以相应的幅度因子,得到最终的模拟调制信号。

2.2 基于深度学习的相位检测和补偿算法
为了解决相位偏移问题,可以采用基于深度学习的相位检测和补偿算法。该算法通常包括两个主要步骤:相位检测和相位补偿。

   相位检测的目标是从接收到的信号中估计出相位偏移量。传统的方法通常基于最大似然估计或最小均方误差准则进行设计,但在复杂信道条件下性能受限。而基于深度学习的方法则能够通过学习大量数据来自动提取特征并进行相位偏移量的估计。

   具体来说,可以采用一个深度神经网络(DNN)来实现相位检测。该网络的输入是接收到的信号样本,输出是估计的相位偏移量。网络的结构可以根据具体任务进行设计,例如可以使用卷积神经网络(CNN)来提取信号的时域特征,或者使用循环神经网络(RNN)来处理序列数据。

   在训练阶段,需要准备大量带有标签的训练数据。标签是真实的相位偏移量,可以通过仿真或实际测量得到。然后,使用反向传播算法等优化方法来训练网络参数,使得网络能够准确地从输入信号中估计出相位偏移量。
   相位补偿的目标是根据估计出的相位偏移量对接收到的信号进行校正,以消除相位偏移的影响。传统的补偿方法通常是通过旋转接收到的信号来实现的。而在基于深度学习的算法中,可以将相位补偿过程集成到神经网络中。

     在得到较为准确的相位估计后,利用该信息对原始接收到的信号进行相位补偿。假设经过深度学习网络得到的相位估计为:



   具体来说,可以在神经网络的输出端添加一个旋转矩阵,该矩阵根据估计出的相位偏移量对接收到的信号进行旋转校正。这样,神经网络的输出就是经过相位补偿后的信号,可以直接用于后续的解调处理。

3.MATLAB核心程序
```for i = 1:length(SNR)
i
for j = 1:10
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1exp(sqrt(-1)phase);

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2*exp(-sqrt(-1)*mean2(offset2));
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('32QAM无相位补偿误码率','32QAM相位补偿误码率');
```

相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
1月前
|
算法 5G 数据安全/隐私保护
MIMO系统中差分空间调制解调matlab误码率仿真
本项目展示了一种基于Matlab 2022a的差分空间调制(Differential Space Modulation, DMS)算法。DMS是一种应用于MIMO通信系统的信号传输技术,通过空间域的不同天线传输符号序列,并利用差分编码进行解调。项目包括算法运行效果图预览、核心代码及详细中文注释、理论概述等内容。在发送端,每次仅激活一个天线发送符号;在接收端,通过差分解调估计符号和天线选择。DMS在快速衰落信道中表现出色,尤其适用于高速移动和卫星通信系统。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
1月前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。
|
23天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
30 0
|
1月前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
67 0
|
1月前
|
算法 数据安全/隐私保护
星座图整形技术在光纤通信中的matlab性能仿真,分别对比标准QAM,概率整形QAM以及几何整形QAM
本文介绍了现代光纤通信系统中的星座图整形技术,包括标准QAM、概率整形QAM和几何整形QAM三种方法,并对比了它们的原理及优缺点。MATLAB 2022a仿真结果显示了不同技术的效果。标准QAM实现简单但效率有限;概率整形QAM通过非均匀符号分布提高传输效率;几何整形QAM优化星座点布局,增强抗干扰能力。附带的核心程序代码展示了GMI计算过程。
65 0
|
3月前
|
机器学习/深度学习 监控 算法
目标检测算法技术
8月更文挑战第11天
|
3月前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第8天
|
3月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
63 0

热门文章

最新文章