基于Harris角点的室内三维全景图拼接算法matlab仿真

简介: 基于Harris角点的室内三维全景图拼接算法matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
在室内三维全景图的构建中,Harris角点检测算法扮演着关键的角色,用于识别场景中的特征点以实现图像间的匹配和对齐。该过程通常包括以下几个步骤:图像获取、角点检测、特征描述、匹配以及基于这些匹配信息的图像拼接。

3.1Harris角点检测原理
对于一个灰度图像 (x,y),我们需要计算每个像素点(x,y) 的梯度强度和方向。通常使用 Sobel 滤波器或其他微分算子来得到水平 Gx 和垂直Gy 方向上的梯度:

5d2e3e9febb6aa46eae5b6d491a80fea_82780907_202403091957300237841523_Expires=1709986050&Signature=pB2CDdhWz4YqQPbN0HbSa2xWzQ0%3D&domain=8.png

这里简化了Sobel算子的形式,实际应用中可能需要考虑更大范围的邻域计算。

定义图像局部窗口W 内的协方差矩阵(结构张量)为:

99d582ad22842a53cd0e0af76a09c992_82780907_202403091956230284817218_Expires=1709985983&Signature=jVSqnF9bGZyDTgW8a7iOCJVDb4k%3D&domain=8.png

3.2 Harris响应函数
Harris等人提出的响应函数R 结合了迹和行列式的特性,用于衡量区域是否具有稳定的角点属性:

3c0efba6f7ba776b4b6c425a248bdfc7_82780907_202403091956140191166695_Expires=1709985974&Signature=wtTpbDbpN%2BCjI0Y0FDxUT0fq340%3D&domain=8.png

其中,λ1,λ2 是协方差矩阵M 的特征值,k 是一个自由参数,通常取 0.04~0.06。当 R 较大时,表示该区域具有较强的角点特征。

3.3 角点检测与筛选
通过对每个像素窗口应用上述公式计算响应值,然后通过阈值处理,找出响应值大于预定阈值的点作为角点候选。进一步,可以采用非极大值抑制去除边缘响应较高的假阳性点。

  在室内三维全景图拼接中,首先利用Harris角点检测方法分别从各个相邻视图中找到稳定的特征点。接着,运用如SIFT、SURF等更稳健的特征描述符提取特征点的描述向量,进行两两视图之间的特征匹配。

 匹配成功后,通过几何变换(如单应性矩阵H或本质矩阵E)估计不同视图间的关系,从而实现图像对齐。最后,依据对齐结果采用图像融合技术拼接各视角下的图像,形成无缝的室内三维全景图。

  由于篇幅限制,这里并未涵盖完整的数学推导和示意图,但在实际操作中,涉及到更多的图像处理技术与优化策略。在可视化方面,可以借助专门的数学排版工具生成对应的数学公式图片,以便更好地理解复杂的矩阵运算和相关概念。

4.部分核心程序

```dirs = 'datasheet/';% 定义文件夹路径
files = dir(dirs);% 获取文件夹内的所有文件和子文件夹信息
files = files(2:end);% 去除第一个元素
N = length(files);% 计算文件数量
Iset = {};
cnt = 1;
for i = 1:N% 遍历所有文件
if files(i).name(1) ~= '.'
% 读取图像文件,并将其路径拼接为完整路径
im = imread(strcat(dirs,files(i).name));
% 调整图像大小为640x640,并将其转换为双精度浮点数,同时归一化到[0,1]范围
im = double(imresize(im, [640, 640]))/255;
% 将处理后的图像添加到Iset中
Iset{cnt} = im;
cnt = cnt + 1;
end
end

img12=func_mix(Iset{1},Iset{2},1);
img34=func_mix(Iset{3},Iset{4},1);
img56=func_mix(Iset{5},Iset{6},0);
img78=func_mix(Iset{7},Iset{8},0);
img789=func_mix(img78,Iset{9},0);

img1234=func_mix(img12,img34,0);
img56789=func_mix(img56,img789,0);

img1234=func_mix(img12,img34,0);
img123456789=func_mix(img1234,img56789,0);

[R,C,K] = size(img123456789);
figure;
imshow(img123456789(0.4R:0.85R,0.1C:0.75C,:));

figure;
subplot(231);imshow(img12);
subplot(232);imshow(img34);
subplot(233);imshow(img56);
subplot(234);imshow(img78);
subplot(235);imshow(img789);
subplot(236);imshow(img56789);

```

相关文章
|
7天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
基于粒子滤波器的电池剩余使用寿命计算matlab仿真
本研究基于粒子滤波器预测电池剩余使用寿命(RUL),采用MATLAB2022a实现。通过非线性动力学模型模拟电池老化过程,利用粒子滤波器处理非线性和非高斯问题,准确估计电池SOH变化趋势,进而预测RUL。系统仿真结果显示了良好的预测性能。
|
2天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
3天前
|
算法
超市火灾烟雾蔓延及人员疏散的matlab模拟仿真,带GUI界面
本项目基于MATLAB2022A开发,模拟了大型商业建筑中火灾发生后的人员疏散与烟雾扩散情况。算法通过设定引导点指导人员疏散,考虑视野范围、随机运动及多细胞竞争同一格点的情况。人员疏散时,根据是否处于烟雾区调整运动策略和速度,初始疏散采用正态分布启动。烟雾扩散模型基于流体方程,考虑了无风环境下的简化。
|
9天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
6天前
|
存储 算法 数据安全/隐私保护
基于方块编码的图像压缩matlab仿真,带GUI界面
本项目展示了基于方块编码的图像压缩算法,包括算法运行效果、软件环境(Matlab 2022a)、核心程序及理论概述。算法通过将图像划分为固定大小的方块并进行量化、编码,实现高效压缩,适用于存储和传输大体积图像数据。
|
6天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
8天前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
8天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。