基于yolov2深度学习网络的视频手部检测算法matlab仿真

简介: 基于yolov2深度学习网络的视频手部检测算法matlab仿真

1.算法运行效果图预览
输入mp4格式的视频文件进行测试,视频格式为1080p@30.

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
近年来,深度学习在计算机视觉领域取得了显著成果,特别是在目标检测任务中。YOLO(You Only Look Once)系列算法作为其中的代表,以其高效和实时的性能受到广泛关注。YOLOv2,作为YOLO的改进版,通过一系列优化策略,进一步提升了检测精度和速度。

YOLOv2网络结构

   YOLOv2的网络结构主要由三部分组成:Darknet-19特征提取网络、多尺度预测和锚框(anchor boxes)机制。

Darknet-19

  Darknet-19是一个包含19个卷积层和5个最大池化层的深度卷积神经网络,用于从输入图像中提取特征。与VGG等网络相比,Darknet-19具有更少的计算量和更高的性能。

多尺度预测

   YOLOv2采用了多尺度预测策略,通过在不同尺度的特征图上进行检测,提高了对不同大小目标的检测能力。具体来说,网络将输入图像划分为SxS的网格,每个网格预测B个锚框,每个锚框预测目标的边界框(bounding box)、置信度(confidence score)和类别概率(class probabilities)。

锚框机制

    YOLOv2引入了锚框机制,通过预设一组不同大小和宽高比的锚框,使得网络更容易学习目标的形状。在训练过程中,网络通过计算锚框与真实边界框的交并比(IoU)来确定正样本和负样本,从而进行有监督的学习。

训练策略

   YOLOv2的训练策略包括多尺度训练、批量归一化、高分辨率分类器微调等。这些策略有助于提高网络的泛化能力和检测精度。

多尺度训练

  多尺度训练是指在网络训练过程中,不断改变输入图像的尺寸,使得网络能够适应不同大小的目标。这种策略有助于提高网络的鲁棒性和泛化能力。

批量归一化

  批量归一化是一种有效的正则化技术,通过在每个批量的数据上进行归一化处理,减少了网络对初始权重的敏感性,加速了网络的收敛速度。

高分辨率分类器微调

  YOLOv2首先在ImageNet数据集上预训练一个高分辨率的分类器,然后在检测任务上进行微调。这种策略使得网络能够更好地提取图像特征,从而提高检测精度。

4.部分核心程序

for i = 1:numFramesToRead
    i
    img     = readFrame(reader); % 从视频流中读取当前帧
    [R,C,K] = size(img);
    KK1     = R/img_size(1);
    KK2     = C/img_size(2);
    tmps1   = [];
    tmps2   = [];

    I               = imresize(img,img_size(1:2));
    [bboxes,scores] = detect(detector,I,'Threshold',0.15);
    bboxes2 = bboxes;
    scores2 = scores;
    if isempty(scores)==0
       %对检测结果做二次优化
       %step1:删除置信度多低的识别区域
       idx=[];
       idx=find(scores<=lvlscore);
       bboxes(idx,:)=[];
       scores(idx)  =[];
       %step2:通过距离矩阵算法,将接近的多个识别框合并为一个识别区域
       xx =  bboxes(:,1);
       yy =  bboxes(:,2);
       dist =[];
       for j1 = 1:length(xx)
           for j2 = j1+1:length(xx)
               dist(j1,j2) = sqrt((xx(j1)-xx(j2))^2 + (yy(j1)-yy(j2))^2);
           end
       end

       bboxes2 = bboxes;
       scores2 = scores;
       if isempty(dist)==0;%如果只有一只手,且只检测到一个,则dist为空,那么不处理
          if size(dist,1)==1 & size(dist,2)==2 %检测到2个目标
             if dist(2)<lvl%判断为1只手 
                bboxes2 = []; 
                [scores2,II] = max(scores); 

                bboxes2 = bboxes(II,:);

             else%判断为两只手
                bboxes2 = bboxes;
                scores2 = scores;
             end
          else
             %通过kmeans聚类为两类
             idx = [];
             idx = kmeans(bboxes(:,1:2),2);
             i1  = find(idx==1);
             i2  = find(idx==2);
             [scoresa,IIa] = max(scores(i1)); 
             [scoresb,IIb] = max(scores(i2));  

             bboxes2 = [bboxes(i1(IIa),:);bboxes(i2(IIb),:)];
             scores2 = [scoresa;scoresb];
          end
       end

............................................................................



    imshow(I2, []);  % 显示带有检测结果的图像


    pause(1/60);
end
相关文章
|
17天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
17天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
3天前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
|
3天前
|
算法 数据处理 数据安全/隐私保护
基于投影滤波算法的rick合成地震波滤波matlab仿真
本课题基于MATLAB2022a实现对RICK合成地震波的滤波仿真,采用投影滤波与卷积滤波投影两种方法处理合成地震剖面。地震波滤波是地震勘探中的关键步骤,用于去噪和增强信号。RICK模型模拟实际地震数据,投影滤波算法通过分解信号与噪声子空间实现有效去噪。完整程序运行无水印,包含核心代码与理论推导,适用于地震数据处理研究及学习。
|
9天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
9月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
361 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
9月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
223 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
9月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
332 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)