1.算法描述
遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。
其主要步骤如下:
1.初始化
选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。
通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。
2.选择
根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。
给出目标函数f,则f(bi)称为个体bi的适应度。以
为选中bi为下一代个体的次数。
显然.从式(3—86)可知:
(1)适应度较高的个体,繁殖下一代的数目较多。
(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。
这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。
3.交叉
对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。
2.仿真效果预览
matlab2022a仿真结果如下:
3.MATLAB核心程序
chromlength=10; %字符串长度(个体长度)
pc=0.6; %交叉概率,只有在随机数小于pc时,才会产生交叉
pm=0.001; %变异概率
pop=initpop(popsize,chromlength); %随机产生初始群体
for i=1:100 %20为遗传代数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue);
%复制
[newpop1]=crossover(newpop,pc);
%交叉
[newpop2]=mutation(newpop1,pc);
%变异
[objvalue]=calobjvalue(newpop2);
%计算目标函数
fitvalue=calfitvalue(objvalue);
%计算群体中每个个体的适应度
[bestindividual,bestfit]=best(newpop2,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=bestfit; %返回的 y 是自适应度值,而非函数值
x(i)=decodechrom(bestindividual,1,chromlength)*50/1023; %将自变量解码成十进制
pop=newpop2;
end
fplot('-x.*x+50.*x+12',[0,50])
hold on
plot(x,y,'r*')
hold on
[z index]=max(y); %计算最大值及其位置
xfm=x(index) %计算最大值对应的x值
ymax=z