数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型

简介: 本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

............................................
%调频指数
uj = 1; 
mf = 0.6; 
wpp= 6;

df1= fs/N;
n  = 0:N/2;
f  = n*df1;      
%产生高斯白噪声
u  = wgn(1,N,wpp);       
%调制噪声带宽10M
wp = 10e6;                        
ws = 13e6; 
rp = 1; 
rs = 60; 

[Nn,wn]=buttord(wp/(30e6/2),ws/(30e6/2),rp,rs); 
[b,a] = butter(Nn,wn);
%生成带限高斯白噪声
u     = filter(b,a,u);               

j2    = fft(u);  

figure
subplot(221)
plot(t1,u)
title('高斯带限噪声');
xlabel('t(s)')
ylabel('幅度/v)');
subplot(223)
plot(f/1e6,10*log10(abs(j2(n+1)*2/N)))
title('功率谱');
xlabel('f(MHz)')
ylabel('功率/dB)');
ss(1)=0;                      
for i=1:N-1                
    ss(i+1)=u(i)+ss(i);
end

ss = ss*Tr/N;                
y  = uj*cos(2*pi*fj*t1+2*pi*mf*bj*ss+100);    
J  = fft(y); 


subplot(222)
plot(t1,y)
title('噪声调频干扰时域波形')
xlabel('t(s)')
ylabel('幅度/v)');
xlim([0,0.000001]);


subplot(224)
plot(f/1e6,(abs(J(n+1))))
title('功率谱')
xlabel('f(MHz)')
ylabel('功率/dB)');
01_196m

4.算法理论概述
在现代通信和数据传输系统中,数据链起着至关重要的作用。然而,数据链的性能往往会受到各种电磁干扰的影响。了解不同类型的电磁干扰原理,对于设计抗干扰的数据链系统以及采取有效的干扰抑制措施具有重要意义。本文将详细介绍噪声调频干扰、线性调频干扰、噪声干扰、扫频干扰和灵巧干扰这五种常见干扰模型的原理,并进行对比分析。

4.1 噪声调频干扰
噪声调频干扰是一种通过将噪声信号调制到载波频率上,从而产生干扰信号的方法。在噪声调频干扰中,噪声信号通常是一个随机过程,其功率谱密度在一定的频率范围内是均匀分布的。

image.png

4.2 线性调频干扰
线性调频干扰是一种通过将线性调频信号作为干扰源,对数据链系统进行干扰的方法。线性调频信号是一种频率随时间线性变化的信号,其数学表达式为:
image.png

4.3 噪声干扰
噪声干扰是一种通过向数据链系统中注入随机噪声信号,从而破坏数据传输的方法。噪声干扰可以分为白噪声干扰和有色噪声干扰两种类型。

image.png

4.4 扫频干扰
扫频干扰是一种通过在一定的频率范围内连续改变干扰信号的频率,从而对数据链系统进行干扰的方法。扫频干扰可以分为线性扫频干扰和非线性扫频干扰两种类型。

image.png

4.5 灵巧干扰
灵巧干扰是一种智能化的干扰方式,它能够根据数据链系统的特点和工作状态,自适应地调整干扰策略,以达到最佳的干扰效果。

灵巧干扰通常采用数字信号处理技术,对数据链系统的信号进行分析和处理,提取出有用的信息,然后根据这些信息生成相应的干扰信号。

灵巧干扰的具体实现方法有很多种,例如:

基于认知无线电技术的灵巧干扰,能够感知数据链系统的工作频率、调制方式等参数,然后选择合适的干扰策略进行干扰。

基于机器学习算法的灵巧干扰,能够通过对数据链系统的信号进行学习和训练,自动生成最优的干扰信号。

相关文章
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
293 3
|
4月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
282 0
|
4月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
4月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
378 2
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
459 0
|
4月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
293 0
|
4月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
166 0
|
4月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
167 0

热门文章

最新文章