基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 摘要:本文介绍了考虑时间窗的车辆路径问题(VRPTW),在MATLAB2022a中进行测试。VRPTW涉及车辆从配送中心出发,服务客户并返回,需在指定时间窗内完成且满足车辆容量限制,目标是最小化总行驶成本。文章探讨了遗传算法(GA)和粒子群优化(PSO)的基本原理及其在VRPTW中的应用,包括编码、适应度函数、选择、交叉、变异等步骤。同时,提出了动态惯性权重、精英策略、邻域搜索、多种群和启发式信息等优化策略,以应对时间窗限制并提升算法性能。

1.程序功能描述
VRPTW是车辆路径问题(VRP)的一个扩展,它在基本的车辆路径问题上增加了对客户服务时间窗的考虑,使得问题更加复杂且具有实际应用价值。在VRPTW问题中,有一组车辆从起点(通常是配送中心)出发,需要服务一组客户点,并最终返回起点。每个客户点都有一个服务时间窗,即最早服务时间和最晚服务时间。车辆必须在时间窗内到达客户点进行服务,并满足车辆的容量限制。目标是确定一组最优路径,使得所有客户点都被服务到,且总行驶成本(通常是总行驶距离或总行驶时间)最小化。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg

3.核心程序
```while gen <= Iters
gen
%粒子更新
for i=1:Npop
%交叉
Pops(i,2:end-1)=func_cross(Pops(i,2:end-1),Pbest(i,2:end-1));
%计算距离
Popd(i) = func_dist(Pops(i,:),Mdist,Vtime,Demand,TimeWindow,Travelcon,Capc);
if Popd(i) < Pdbest(i)
Pbest(i,:)= Pops(i,:);
Pdbest(i) = Popd(i);
end
%更新Gbest
[mindis,index] = min(Pdbest);

    if mindis<Gdbest

Gbest =Pbest(index,:);
Gdbest = mindis;
end

  %粒子与Gbest交叉
    Pops(i,2:end-1)=func_cross(Pops(i,2:end-1),Gbest(2:end-1));

    %粒子变异

Popd(i) = func_dist(Pops(i,:),Mdist,Vtime,Demand,TimeWindow,Travelcon,Capc);
if Popd(i) < Pdbest(i)
Pbest(i,:)=Pops(i,:);
Pdbest(i)=Popd(i);
end

    %变异

Pops(i,:)=func_Mut(Pops(i,:));
Popd(i) = func_dist(Pops(i,:),Mdist,Vtime,Demand,TimeWindow,Travelcon,Capc);
if Popd(i) < Pdbest(i)
Pbest(i,:)=Pops(i,:);
Pdbest(i)=Popd(i);
end

    %存储此代最短距离
    [mindis,index] = min(Pdbest); 

    if mindis<Gdbest

Gbest = Pbest(index,:);
Gdbest = mindis;
end
end
gbest(gen)=Gdbest;
gen=gen+1;
end
17

```

4.本算法原理
在VRPTW问题中,有一组车辆从起点(通常是配送中心)出发,需要服务一组客户点,并最终返回起点。每个客户点都有一个服务时间窗,即最早服务时间和最晚服务时间。车辆必须在时间窗内到达客户点进行服务,并满足车辆的容量限制。目标是确定一组最优路径,使得所有客户点都被服务到,且总行驶成本(通常是总行驶距离或总行驶时间)最小化。

4.1 遗传算法(GA)基本原理

    遗传算法是一种模拟自然选择和遗传机制的优化算法。它通过选择、交叉和变异等操作来模拟生物进化过程,从而寻找问题的最优解。在DVRP问题中,遗传算法的主要步骤如下:

编码:将问题的解(即车辆路径)表示为一种可以被遗传算法操作的编码形式。常见的编码方式包括基于客户序列的编码和基于路径的编码。

初始种群:随机生成一组初始解,构成初始种群。每个解代表一个可能的车辆路径方案。

适应度函数:定义一个适应度函数来评估每个解的质量。在DVRP问题中,适应度函数通常是路径总成本的倒数或负数,以最小化行驶距离为目标。

选择:根据适应度函数选择种群中较优的个体,用于产生下一代。常见的选择操作包括轮盘赌选择、锦标赛选择等。

交叉:通过交叉操作结合两个父代个体的部分基因,生成新的子代个体。在DVRP问题中,常用的交叉操作包括顺序交叉、部分匹配交叉等。

变异:对个体编码进行随机的小幅度改动,以增加种群的多样性。常见的变异操作包括交换变异、倒位变异等。

终止条件:当达到预设的迭代次数或满足其他终止条件时,算法停止,并输出当前最优解。

4.2 粒子群优化(PSO)基本原理

    粒子群优化算法是一种模拟鸟群觅食行为的优化算法。它通过个体和群体的历史最佳位置来更新粒子的速度和位置,从而寻找问题的最优解。在PSO中,每个粒子代表一个潜在的解,并具有速度和位置属性。在DVRP问题中,粒子群优化的主要步骤如下:

初始化粒子群:随机初始化粒子的位置和速度。每个粒子的位置代表一个可能的车辆路径方案。

评估粒子:使用适应度函数评估每个粒子的质量。

更新个体和全局最佳位置:记录每个粒子的历史最佳位置和群体中的全局最佳位置。

更新速度和位置:根据个体和全局最佳位置更新粒子的速度和位置。速度更新公式为:

81b49dc299f83c2aa03b724ea115bec2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

终止条件:当达到最大迭代次数或满足其他终止条件时,算法停止。

4.3 算法优化策略
为了进一步提高GA-PSO混合优化算法在VRPTW问题中的性能,可以采取以下优化策略:

动态调整惯性权重:根据算法的搜索状态动态调整惯性权重,以平衡全局和局部搜索能力。

精英策略:保留种群中的最优个体,避免在交叉和变异过程中丢失优秀基因。

邻域搜索:在粒子群优化中引入邻域搜索机制,以加快局部搜索速度。

多种群策略:使用多个种群并行搜索,增加算法的多样性,避免陷入局部最优。

启发式信息:利用启发式信息(如最近邻、节约算法等)来辅助生成初始种群,提高初始解的质量。

时间窗处理:针对VRPTW问题中的时间窗限制,采用适当的时间窗处理机制,如插入法、时间窗交换法等,以确保生成的解满足时间窗约束。

相关文章
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
1月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
2月前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
146 29
|
2月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
3月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
3月前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的Kp、Ki、Kd参数,以输出误差为目标值,迭代求得最优参数。采用MATLAB 2022a验证,利用遗传算法全局寻优特性,自动完成参数整定,适合复杂及非线性系统,有效提升控制性能。
|
4月前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。