基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计

简介: ### 简介本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):
42047323b7fecdcdebc5aacafb8d499e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
6bdaea04c344fce7d678ec1ef55a28be_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

图传测试:

0c089e5509953b621b7d66cf65a82e80_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
基于DVB-T的COFDM+16QAM+LDPC码通信链路是一种常用的数字视频广播系统,用于实现高效的传输和接收。该系统结合了正交频分复用(COFDM)、16QAM调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括载波同步、定时同步和信道估计模块,用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。本文将详细介绍基于DVB-T的COFDM+16QAM+LDPC码通信链路的系统原理、数学公式和各个环节的功能。

 基于DVB-T的COFDM+16QAM+LDPC码通信链路通过COFDM技术将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。16QAM调制将每四个比特映射到一个复数点上,实现了16种相位和振幅的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。载波同步、定时同步和信道估计模块用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。

COFDM调制
COFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。在每个OFDM符号中,数据被并行分配到不同的子载波上,并在频域上进行调制。COFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。

16QAM调制
16QAM调制将每四个比特映射到一个复数点上,共有16种相位和振幅的调制方式。16QAM调制可以在一个符号周期内传输4个比特,实现高效的频谱利用。

LDPC编码和解码
LDPC编码是一种误码控制编码技术,通过稀疏校验矩阵构建编码器和解码器。编码器将输入数据和校验矩阵进行矩阵运算,生成编码后的数据。解码器使用迭代解码算法,通过消息传递的方式对接收到的编码数据进行解码。LDPC编码可以提供较高的纠错能力和编码效率。

载波同步
载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。

定时同步
定时同步模块用于估计接收信号的定时偏移,并进行补偿。定时偏移会导致接收信号的采样时刻不准确,因此需要通过同步来恢复正确的采样时刻。定时同步通过计算接收信号的时钟边沿间隔的平方误差来估计定时偏移,然后通过反馈控制来调整采样时钟的相位,实现接收信号的定时同步。

信道估计
信道估计模块用于估计信道状态,以便在接收端进行合适的解调和解码。信道状态的估计可以通过接收信号的预处理和训练序列的发送来实现。根据接收信号和已知的训练序列,可以估计信道的衰落、噪声和多径效应等参数。

3.MATLAB核心程序
```for i=1:l+1
%分散导频值
train_sym(i,pilot(i,:))=Burst2.(1/2-train(i,pilot(i,:)));
end

signal = [1:carrier_count];
X3(:,signal) = 0;

for i=1:l+1
%插入分散导频
X3(i,pilot(i,:)) = train_sym(i,pilot(i,:));
end
%保留原始插入分散导频
X3_SPCP = X3(1:4,:);
X3_SPCP(2:4,1) = 0;
X3_SPCP(2:4,1705) = 0;
ScPilotX = X3(1:4,:);
.............................................................................................
%STEP2:整数倍载波频率同步
Np = length(CP);
for i=1:12-1;
tmps=0;
for p=0:Np-1
tmps = tmps + X_modify1(i,45p+1)conj(X_modify1(i+1,45p+1));
end
fl(i) = abs(tmps);
end
Fre_err = mean(Ff)+mean(fl);
X_modify2 = X_modify1;
for i1=1:12
X_modify2(i1,:)=X_modify1(i1,:).
exp(-j2pi*(Fre_err));
end

subplot(426);
plot(X_modify2(Max_ip,:),'b.');
xlabel('In-Phase');
ylabel('Quadrature');
axis square
title('经定频偏修正的符号');

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%信道估计
r_chestimation = X_modify2(First_ip:First_ip+8-1,:);
X_modify2 = r_chestimation;
r_chestimation(:,TPS) = 0;

for m=1:8
for k=1:1705
if (abs(Data_index(m,k))>0.5)
r_chestimation(m,k)=0;
end
end
end
.......................................................................................
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------LDPC解码 --------------------------------
hDemod = modem.qamdemod('M', ModulateIndex, 'PhaseOffset', 0, 'SymbolOrder', 'Gray', 'OutputType', 'Bit');
msg_demod = demodulate(hDemod, S_data.');
msg_demod0= 2msg_demod-1;
msg_dec = [];
for i = 1:11
[vhatsd,nb_itersd,successsd] = func_Dec(msg_demod0(Ns
(i-1)+1:Ns*i),newH,N0,Max_iter);
tmps = vhatsd(Ms+1:Ns)';
msg_dec = [msg_dec;tmps];
end
[nChnlErrs BERChnl] = biterr(msg_enc(1:end/4), msg_demod);
[nCodErrs BERCoded] = biterr(msg_orig(1:length(msg_dec)), msg_dec);

NERR=NERR+nCodErrs;
NERR
Eind=Eind+BERCoded;

end
Err = [Err,Eind/ind];
end

figure;
semilogy(EbN0,Err,'b-o');
grid on
xlabel('EbN0');
ylabel('误码率');
save R1.mat EbN0 Err
0sj_034m

```

相关文章
|
29天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
29天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
143 68
|
1天前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
96 65
|
1天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
1月前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
30天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
53 18
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
111 10
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。