基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计

简介: ### 简介本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):
42047323b7fecdcdebc5aacafb8d499e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
6bdaea04c344fce7d678ec1ef55a28be_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

图传测试:

0c089e5509953b621b7d66cf65a82e80_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
基于DVB-T的COFDM+16QAM+LDPC码通信链路是一种常用的数字视频广播系统,用于实现高效的传输和接收。该系统结合了正交频分复用(COFDM)、16QAM调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括载波同步、定时同步和信道估计模块,用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。本文将详细介绍基于DVB-T的COFDM+16QAM+LDPC码通信链路的系统原理、数学公式和各个环节的功能。

 基于DVB-T的COFDM+16QAM+LDPC码通信链路通过COFDM技术将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。16QAM调制将每四个比特映射到一个复数点上,实现了16种相位和振幅的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。载波同步、定时同步和信道估计模块用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。

COFDM调制
COFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。在每个OFDM符号中,数据被并行分配到不同的子载波上,并在频域上进行调制。COFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。

16QAM调制
16QAM调制将每四个比特映射到一个复数点上,共有16种相位和振幅的调制方式。16QAM调制可以在一个符号周期内传输4个比特,实现高效的频谱利用。

LDPC编码和解码
LDPC编码是一种误码控制编码技术,通过稀疏校验矩阵构建编码器和解码器。编码器将输入数据和校验矩阵进行矩阵运算,生成编码后的数据。解码器使用迭代解码算法,通过消息传递的方式对接收到的编码数据进行解码。LDPC编码可以提供较高的纠错能力和编码效率。

载波同步
载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。

定时同步
定时同步模块用于估计接收信号的定时偏移,并进行补偿。定时偏移会导致接收信号的采样时刻不准确,因此需要通过同步来恢复正确的采样时刻。定时同步通过计算接收信号的时钟边沿间隔的平方误差来估计定时偏移,然后通过反馈控制来调整采样时钟的相位,实现接收信号的定时同步。

信道估计
信道估计模块用于估计信道状态,以便在接收端进行合适的解调和解码。信道状态的估计可以通过接收信号的预处理和训练序列的发送来实现。根据接收信号和已知的训练序列,可以估计信道的衰落、噪声和多径效应等参数。

3.MATLAB核心程序
```for i=1:l+1
%分散导频值
train_sym(i,pilot(i,:))=Burst2.(1/2-train(i,pilot(i,:)));
end

signal = [1:carrier_count];
X3(:,signal) = 0;

for i=1:l+1
%插入分散导频
X3(i,pilot(i,:)) = train_sym(i,pilot(i,:));
end
%保留原始插入分散导频
X3_SPCP = X3(1:4,:);
X3_SPCP(2:4,1) = 0;
X3_SPCP(2:4,1705) = 0;
ScPilotX = X3(1:4,:);
.............................................................................................
%STEP2:整数倍载波频率同步
Np = length(CP);
for i=1:12-1;
tmps=0;
for p=0:Np-1
tmps = tmps + X_modify1(i,45p+1)conj(X_modify1(i+1,45p+1));
end
fl(i) = abs(tmps);
end
Fre_err = mean(Ff)+mean(fl);
X_modify2 = X_modify1;
for i1=1:12
X_modify2(i1,:)=X_modify1(i1,:).
exp(-j2pi*(Fre_err));
end

subplot(426);
plot(X_modify2(Max_ip,:),'b.');
xlabel('In-Phase');
ylabel('Quadrature');
axis square
title('经定频偏修正的符号');

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%信道估计
r_chestimation = X_modify2(First_ip:First_ip+8-1,:);
X_modify2 = r_chestimation;
r_chestimation(:,TPS) = 0;

for m=1:8
for k=1:1705
if (abs(Data_index(m,k))>0.5)
r_chestimation(m,k)=0;
end
end
end
.......................................................................................
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------LDPC解码 --------------------------------
hDemod = modem.qamdemod('M', ModulateIndex, 'PhaseOffset', 0, 'SymbolOrder', 'Gray', 'OutputType', 'Bit');
msg_demod = demodulate(hDemod, S_data.');
msg_demod0= 2msg_demod-1;
msg_dec = [];
for i = 1:11
[vhatsd,nb_itersd,successsd] = func_Dec(msg_demod0(Ns
(i-1)+1:Ns*i),newH,N0,Max_iter);
tmps = vhatsd(Ms+1:Ns)';
msg_dec = [msg_dec;tmps];
end
[nChnlErrs BERChnl] = biterr(msg_enc(1:end/4), msg_demod);
[nCodErrs BERCoded] = biterr(msg_orig(1:length(msg_dec)), msg_dec);

NERR=NERR+nCodErrs;
NERR
Eind=Eind+BERCoded;

end
Err = [Err,Eind/ind];
end

figure;
semilogy(EbN0,Err,'b-o');
grid on
xlabel('EbN0');
ylabel('误码率');
save R1.mat EbN0 Err
0sj_034m

```

相关文章
|
1月前
|
算法 数据安全/隐私保护
基于PSO粒子群优化算法的256QAM星座图的最优概率整形matlab仿真,对比PSO优化前后整形星座图和误码率
本项目基于MATLAB 2022a仿真256QAM系统,采用概率星座整形(PCS)技术优化星座点分布,结合粒子群优化(PSO)算法搜索最优整形因子v,降低误码率,提升传输性能。核心程序包含完整优化流程。
69 0
|
3月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
77 10
|
3月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
80 1
|
6月前
|
编解码 算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+Viterbi编解码图传通信系统matlab仿真,包括载波定时同步,信道估计
本内容展示了基于DVB-T的COFDM+16QAM+Viterbi编解码通信链路的算法仿真与实现。通过Matlab2022a仿真,验证了系统性能(附无水印完整代码运行结果截图)。该系统结合COFDM、16QAM调制和Viterbi编解码技术,具备高效传输与抗多径衰落能力。核心程序涵盖加循环前缀、瑞利多径衰落信道模拟、符号同步、细定时估计等关键步骤,并实现了图像数据的二进制转换与RGB合并展示。理论部分详细解析了载波同步、定时同步及信道估计模块的功能与原理,为数字视频广播系统的开发提供了全面参考。
120 19
|
3天前
|
传感器 算法 安全
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
|
5天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
65 11
|
5天前
|
机器学习/深度学习 传感器 算法
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
|
5天前
|
算法 安全 BI
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
|
2天前
|
机器学习/深度学习 并行计算 算法
基于二进制粒子群优化(BPSO)最佳PMU位置(OPP)配置研究(Matlab代码实现)
基于二进制粒子群优化(BPSO)最佳PMU位置(OPP)配置研究(Matlab代码实现)
|
3天前
|
机器学习/深度学习 运维 算法
【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)
【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)

热门文章

最新文章