基于GA遗传优化的WSN网络最优节点部署算法matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。

1.程序功能描述
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真,通过遗传优化,获得最少得节点数量,达到最大的节点覆盖率。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

初始节点数量15:

1.jpeg
2.jpeg
3.jpeg

初始节点数量25:

4.jpeg
5.jpeg
6.jpeg

初始节点数量40:

7.jpeg
8.jpeg
9.jpeg

3.核心程序

```% 获取最佳解并绘制优化后的节点部署
[V,I] = min(Jit1);
Xbest = Xga(I,1:Nnode);
Ybest = Xga(I,1+Nnode:Nnode+Nnode);
Nbest = round(Xga(I,end));

subplot(122);

for i=1:Nbest
funccover([Xbest(i),Ybest(i)],rd,1000,'r');
hold on
x1
=Xbest(i)+rdcos(w);
y1_=Ybest(i)+rd
sin(w);
fill(x1,y1,'g','FaceAlpha',0.3)
plot(Xbest(i),Ybest(i),'b.');
hold on
i=i+1;
end
axis([0,width,0,high]);

[Coverage1,Coverage2] = func_fitness(Xbest,Ybest,Nbest);
title(['优化后','WSN节点数量:',num2str(Nbest),',WSN覆盖率:',num2str(100*Coverage1),'%']);

figure;
subplot(121);
bar([Nnode,Nbest]);
xlabel('1:优化前, 2:优化后');
ylabel('节点数量');

subplot(122);
bar([100Coverage1b,100Coverage1]);
xlabel('1:优化前, 2:优化后');
ylabel('覆盖率%');

% 绘制适应度变化曲线
figure
plot(Favg,'b','linewidth',1); % 平均适应度曲线
xlabel('迭代次数');
ylabel('适应度值');
grid on
51

```

4.本算法原理
无线传感器网络(Wireless Sensor Network, WSN)的最优节点部署问题旨在通过合理配置传感器节点的位置,以达到特定的网络覆盖或其他性能指标的最大化。遗传算法(Genetic Algorithm, GA)作为一种启发式优化算法,能够有效解决这类复杂的优化问题。

4.1 遗传算法基础
遗传算法灵感来源于自然界生物进化过程中的遗传和自然选择机制,主要包括以下几个核心步骤:初始化、选择、交叉、变异。

初始化:随机生成初始种群,每个个体代表一个可能的解决方案,即一组传感器节点的位置配置。
评估:根据一定的评价函数(fitness function)计算每个个体的适应度,该函数反映了该解决方案满足目标性能指标的程度。
选择:根据个体的适应度进行选择,适应度高的个体有更高的概率被选中作为“父母”参与下一代的繁殖。
交叉:通过交叉操作交换“父母”个体的部分基因,生成新的“子代”个体,以引入多样性。
变异:以一定概率对子代个体的某些基因进行随机修改,进一步增加种群的多样性。
4.2 WSN节点部署问题建模
设WSN的监测区域为 D⊂R2,需要部署 N 个传感器节点,每个节点 i 的位置为pi​=(xi​,yi​)∈D。假设每个节点的感知范围为R,覆盖目标区域的期望程度可以用覆盖度C 来衡量,通常定义为被至少一个节点覆盖的区域面积与整个监测区域面积的比值。

4.3 适应度函数设计
适应度函数F(p1​,p2​,...,pN​) 应反映网络的覆盖效率及可能的其他约束条件。一个简单的覆盖度最大化适应度函数可以表示为:

8318fbbf9a295f0f9abccfc7b223fe6d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

在实际设计过程中,一般采用网格化方式,来计算覆盖率。

相关文章
|
2天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
29 20
|
2天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
246 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
146 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
115 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)