基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响

简介: 本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。字符数:239

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
低密度奇偶校验码(Low-Density Parity-Check Codes,LDPC)是一种具有逼近香农限性能的信道编码技术。在现代通信系统中,LDPC 码因其优异的性能而得到了广泛的应用。BP(Belief Propagation)译码算法是 LDPC 码的一种重要译码方法,它通过在 Tanner 图上进行消息传递来实现译码。

2.1 LDPC 码的基本原理

374f0e3b80f5ffcf93bae0a2a1c32ec5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 BP 译码算法原理
BP 译码算法是一种基于消息传递的迭代译码算法。在每次迭代中,消息在变量节点和校验节点之间进行传递。变量节点向校验节点传递的消息表示该变量节点为 “0” 或 “1” 的概率。校验节点向变量节点传递的消息表示根据与其相连的其他变量节点的消息,该校验节点所对应的校验方程是否满足的概率。具体的消息传递规则如下:

9fd3a37c90c29ceeb5d400f8d2aedeea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.3 LDPC参数对译码性能的影响
码长的影响

  随着码长的增加,LDPC 码的性能通常会得到提高。这是因为较长的码长可以提供更多的校验信息,从而提高译码的准确性。从数学角度来看,当码长趋于无穷大时,LDPC 码在加性高斯白噪声(AWGN)信道下的性能可以逼近香农限。可以通过分析误码率与码长的关系来验证这一结论。

码率的影响

  码率是信息位长度与码长之比,它决定了编码的效率。一般来说,码率越低,编码的冗余度越高,译码性能越好。对于给定的码长和 SNR,不同的码率会导致不同的误码率性能。可以通过调整码率来平衡编码效率和译码性能。

迭代次数的影响

   迭代次数是 BP 译码算法中的一个重要参数,它决定了消息传递的次数。一般来说,迭代次数越多,译码性能越好,但同时也会增加译码的复杂度和延迟。在一定的 SNR 范围内,随着迭代次数的增加,误码率会逐渐降低。当迭代次数达到一定值后,误码率的改善会变得不明显。

信道类型的影响

   不同的信道类型对 LDPC 码的译码性能有不同的影响。常见的信道类型包括 AWGN 信道、瑞利衰落信道等。在 AWGN 信道下,LDPC 码的性能通常较好,因为噪声是加性的且具有固定的统计特性。在瑞利衰落信道下,信号会经历随机的衰落,这会增加译码的难度。对于不同的信道类型,需要根据其特性来调整 LDPC 码的参数和译码算法,以获得最佳的性能。

3.MATLAB核心程序

for i=1:length(EbN0)

    Bit_err(i) = 0;
    Num_err    = 0;
    Numbers    = 0; %误码率累加器

    while Num_err <= Times(i)
          Num_err
          fprintf('Eb/N0 = %f\n', EbN0(i));
          Trans_data = round(rand(1,N-M));  %产生需要发送的随机数
          ldpc_code  = mod(Trans_data*G,2); %LDPC编码
          Trans_BPSK = 2*ldpc_code-1;       %BPSK

          %通过高斯信道
          sigma      = sqrt(1./(2*10^(EbN0(i)/10)*R));  
          Rec_BPSK   = Trans_BPSK + sigma*randn(1,size(G,2));   

          %LDPC译码 
          z_hat = func_Dec(Rec_BPSK,sigma,H,max_iter);

           x_hat      = z_hat(size(G,2)+1-size(G,1):size(G,2));

         [nberr,rat]  = biterr(x_hat',Trans_data);
          Num_err     = Num_err+nberr;
          Numbers     = Numbers+1;    
    end 
    Bit_err(i)=Num_err/(N*Numbers);
end
figure;
semilogy(EbN0,Bit_err,'o-r');
xlabel('Eb/N0(dB)');
ylabel('BER');
grid on;
if N == 24
   save R_2.mat EbN0 Bit_err
end
if N == 50
   save R_1.mat EbN0 Bit_err
end
if N == 102
   save R0.mat EbN0 Bit_err
end
if N == 204
   save R1.mat EbN0 Bit_err
end
if N == 504
   save R2.mat EbN0 Bit_err
end
if N == 1008
   save R3.mat EbN0 Bit_err
end
0sj_026m
相关文章
|
27天前
|
算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计
### 简介 本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。 核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。
124 76
|
2月前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
65 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
1月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
53 20
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
1月前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
270 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
161 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
135 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度