【lssvm回归预测】基于灰狼算法优化最小支持向量机GWO-LSSVM数据预测模型含Matlab源码

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 【lssvm回归预测】基于灰狼算法优化最小支持向量机GWO-LSSVM数据预测模型含Matlab源码


✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

1) 构建数据集( 即训练集与测试集) ,并对数据预处理

得到路段的历史交通流量数据的时间序列

2) 利用改进灰狼优化算法对 LSSVM 参数优化( 即惩罚

因子 γ 和核函数参数 σ) ,主要步骤如下:

Step 1. 参数初始化

Step 2. 初始化种群并计算函数目标值选择最优个体 αβ η

Step 3. 计算 aA C 的值根据式( 7) 计算种群个体与最优个体的距离并根据式( 8) ( 9) 更新个体位置

Step 4. 由式( 12) -( 14) 对当前种群执行变异交叉和选择操作计算个体的目标函数值

Step 5. 更新最优个体位置

Step 6. 判断是否达到要求如果达到设定值则运行结否则转至 Step 3 继续迭代

3) 根据最优参数得到最优模型后进行交通流量预测

⛄ 部分代码

%灰狼算法优化LSSVM代码

addpath('LSSVMlabv1_8_R2009b_R2011a')%添加工具箱

clear

clc

tic

%% 导入训练数据

data = xlsread('data.xlsx')';

[data_m,data_n] = size(data);%获取数据维度

P = 80;  %百分之P的数据用于训练,其余测试

Ind = floor(P * data_m / 100);


train_data = data(1:Ind,1:end-1); %训练样本输入集

train_result = data(1:Ind,end);   %训练样本输出集

test_data = data(Ind+1:end,1:end-1);% 测试样本输入集

test_result = data(Ind+1:end,end);  %测试样本输出集


%% 数据归一化

[train_x,PS_i] =mapminmax(train_data',0,1);

test_x=mapminmax('apply',test_data',PS_i);

[train_y,PS_o] = mapminmax(train_result',0,1);

train_x=train_x';

test_x=test_x';

train_y=train_y';

%% 参数初始化

type='f';

kernel= 'RBF_kernel';

%计算均方差

trainmse=sum((train_predict-train_result).^2)/length(train_result);

%testmse=sum((test_predict-test_y).^2)/length(test_y)

disp(['best gam = ',num2str(gam),' best sig2 = ',num2str(sig2)])

figure

subplot(1,2,1);

plot(train_predict,':og')

hold on

plot(train_result,'- *')

legend('实际值','拟合值')

title('拟合图')

ylabel('函数输出')

xlabel('样本')

subplot(1,2,2);

plot(test_predict,'r-o')

hold on

plot(test_result,'g:s')

legend('实际值','预测值')

title('预测图')

ylabel('函数输出')

xlabel('样本')

hold off

toc   %计算时间


⛄ 运行结果

⛄ 参考文献

[1]顾凯冬. 基于灰狼算法优化最小二乘支持向量机的调制信号识别研究[D]. 南京邮电大学.

[2]伍轶鸣, 孙博文, 成荣红,等. 基于灰狼算法的LSSVM模型预测凝析气藏露点压力研究[J]. 西安石油大学学报:自然科学版, 2020, 35(2):7.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
4天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
4天前
|
机器学习/深度学习 算法
Matlab|基于支持向量机的电力短期负荷预测【最小二乘、标准粒子群、改进粒子群】
Matlab|基于支持向量机的电力短期负荷预测【最小二乘、标准粒子群、改进粒子群】
|
4天前
|
算法
【智能算法】11种混沌映射算法+2种智能算法示范【鲸鱼WOA、灰狼GWO算法】
【智能算法】11种混沌映射算法+2种智能算法示范【鲸鱼WOA、灰狼GWO算法】
|
4天前
|
机器学习/深度学习 算法 数据可视化
基于SVM支持向量机的数据预测matlab仿真
- **算法效果预览**:展示了6张支持向量机(SVM)在Matlab 2022a中运行的图像,包括分类或预测结果的比较。 - **软件版本**:Matlab 2022a。 - **算法理论**:SVM是监督学习工具,用最大间隔超平面做分类,通过核函数处理非线性问题。 - **核心程序片段**:展示了一个SVM预测模型的MATLAB代码,包括: - 绘制真实值与训练预测值的对比图。 - 计算并可视化31个城市训练数据的RMSE误差。 - 使用模拟数据对2017-2020年进行预测。 - 显示特定城市的预测结果及误差条形图。 - 保存最终的预测数据。
|
4天前
|
机器学习/深度学习 算法
基于自适应支持向量机的matlab建模与仿真,不使用matlab的SVM工具箱函数
基于自适应支持向量机的matlab建模与仿真,不使用matlab的SVM工具箱函数
|
4天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
4天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
4天前
|
算法 调度
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
|
4天前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)