CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

原文链接:https://mp.weixin.qq.com/s/Jt57vblH6-3w-2VXXPgaMg


🚀 快速阅读

  1. 功能:CogAgent-9B 支持高分辨率图像处理和双语交互,能够预测并执行GUI操作。
  2. 技术:基于视觉语言模型GLM-4V-9B,采用双流注意力机制和GUI Grounding预训练方法。
  3. 应用:广泛应用于个人电脑、手机、车机等GUI交互场景,如自动化测试和智能助手。

正文(附运行示例)

CogAgent-9B 是什么

公众号: 蚝油菜花 - CogAgent

CogAgent-9B 是基于 GLM-4V-9B 训练的专用Agent任务模型,仅依赖屏幕截图作为输入,无需HTML等文本表征。该模型支持高分辨率图像处理,具备双语(中英文)交互能力,能预测并执行GUI操作,实现自动化任务。

在多个GUI操作数据集上取得了领先成绩,模型已开源,推动大模型Agent生态的发展。CogAgent-9B可广泛应用于个人电脑、手机、车机等GUI交互场景。

CogAgent-9B 的主要功能

  • GUI 理解和操作:CogAgent-9B能理解和操作图形用户界面(GUI),执行如点击按钮、输入文本等任务。
  • 屏幕截图输入:模型仅依赖屏幕截图作为输入,无需额外的文本表征,如HTML,使其在多种设备上应用灵活。
  • 高分辨率处理:支持高达1120×1120像素的高分辨率图像输入,能够处理更复杂的视觉信息。
  • 双语交互:支持中文和英文的屏幕截图和语言交互,增强了模型的国际化应用能力。
  • 预测GUI操作:根据用户指定的任务和历史操作,模型能够预测下一步的GUI操作。
  • 自动化任务执行:CogAgent-9B能模拟用户操作,自动化执行一系列GUI任务。
  • 跨平台应用:适用于个人电脑、手机、车机等多种基于GUI交互的场景。
  • 性能领先:在多个GUI操作数据集上取得了领先成绩,显示了其卓越的性能。

CogAgent-9B 的技术原理

  • 视觉语言模型(VLM):CogAgent-9B构建在强大的视觉语言模型GLM-4V-9B之上,能够处理视觉数据(如屏幕截图)和文本信息,实现对GUI元素的理解和操作。
  • 双流注意力机制:CogAgent-9B采用双流注意力机制,将视觉元素(例如按钮和图标)映射到它们的文本标签或描述,增强了模型预测用户意图和执行相关操作的能力。
  • GUI Grounding预训练:在预训练阶段,CogAgent-9B引入了GUI Grounding预训练方法,通过屏幕截图和layout对,构造界面子区域和layout表征的对应关系,提升模型对视觉输入和GUI界面的基础理解能力。
  • 数据集丰富与完善:CogAgent-9B团队广泛收集并整合了多种数据集,包括无监督数据和GUI指令微调数据集,这些数据集的丰富性和多样性为模型提供了广泛的训练和测试基础。
  • 预训练与后训练策略优化:CogAgent-9B在预训练阶段引入了GUI Referring Expression Generation (REG)和GUI Referring Expression Comprehension (REC)任务,以构建界面子区域与布局表征的对应关系。在后训练阶段,采用了更科学的GUI agent后训练策略,使模型具备了更强的分析、推理、预测能力。
  • 模型推理及思维链优化:CogAgent-9B将思维链分解为Status(当前屏幕状态)、Plan(全局计划)、Action(下一步自然语言描述)、Operation(下一步形式语言描述),并通过随机采样混合多种模式训练数据,灵活调整和控制推理过程中的实际输出。
  • 动作空间完善:CogAgent-9B明确了基础动作空间,新增了LLM、QUOTE_TEXT、LAUNCH等高级动作,增强了模型的使用工具和交互能力。

如何运行 CogAgent-9B

环境配置

确保已安装 Python 3.10.16 或更高版本,然后安装以下依赖:

pip install -r requirements.txt

本地推理

基于 transformers 进行本地推理,可以运行以下命令:

python inference/cli_demo.py --model_dir THUDM/cogagent-9b-20241220 --platform "Mac" --max_length 4096 --top_k 1 --output_image_path ./results --format_key status_action_op_sensitive

在线Web演示

运行在线Web演示,支持连续图像上传进行交互推理:

python inference/web_demo.py --host 0.0.0.0 --port 7860 --model_dir THUDM/cogagent-9b-20241220 --format_key status_action_op_sensitive --platform "Mac" --output_dir ./results

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
25天前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1091 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
21天前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
214 120
|
1月前
|
人工智能 搜索推荐 UED
一个牛逼的国产AI自动化工具,开源了 !
AiPy是国产开源AI工具,结合大语言模型与Python,支持本地部署。用户只需用自然语言描述需求,即可自动生成并执行代码,轻松实现数据分析、清洗、可视化等任务,零基础也能玩转编程,被誉为程序员的智能助手。
|
1月前
|
数据采集 运维 监控
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
本文系统解析爬虫与自动化核心技术,涵盖HTTP请求、数据解析、分布式架构及反爬策略,结合Scrapy、Selenium等框架实战,助力构建高效、稳定、合规的数据采集系统。
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
|
2月前
|
运维 Linux 网络安全
自动化真能省钱?聊聊运维自动化如何帮企业优化IT成本
自动化真能省钱?聊聊运维自动化如何帮企业优化IT成本
89 4
|
4月前
|
运维 监控 安全
从实践到自动化:现代运维管理的转型与挑战
本文探讨了现代运维管理从传统人工模式向自动化转型的必要性与路径,分析了传统运维的痛点,如效率低、响应慢、依赖经验等问题,并介绍了自动化运维在提升效率、降低成本、增强系统稳定性与安全性方面的优势。结合技术工具与实践案例,文章展示了企业如何通过自动化实现运维升级,推动数字化转型,提升业务竞争力。
|
运维 Linux Apache
,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具
【10月更文挑战第7天】随着云计算和容器化技术的发展,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具,通过定义资源状态和关系,确保系统始终处于期望配置状态。本文介绍Puppet的基本概念、安装配置及使用示例,帮助读者快速掌握Puppet,实现高效自动化运维。
257 4

热门文章

最新文章