CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

原文链接:https://mp.weixin.qq.com/s/Jt57vblH6-3w-2VXXPgaMg


🚀 快速阅读

  1. 功能:CogAgent-9B 支持高分辨率图像处理和双语交互,能够预测并执行GUI操作。
  2. 技术:基于视觉语言模型GLM-4V-9B,采用双流注意力机制和GUI Grounding预训练方法。
  3. 应用:广泛应用于个人电脑、手机、车机等GUI交互场景,如自动化测试和智能助手。

正文(附运行示例)

CogAgent-9B 是什么

公众号: 蚝油菜花 - CogAgent

CogAgent-9B 是基于 GLM-4V-9B 训练的专用Agent任务模型,仅依赖屏幕截图作为输入,无需HTML等文本表征。该模型支持高分辨率图像处理,具备双语(中英文)交互能力,能预测并执行GUI操作,实现自动化任务。

在多个GUI操作数据集上取得了领先成绩,模型已开源,推动大模型Agent生态的发展。CogAgent-9B可广泛应用于个人电脑、手机、车机等GUI交互场景。

CogAgent-9B 的主要功能

  • GUI 理解和操作:CogAgent-9B能理解和操作图形用户界面(GUI),执行如点击按钮、输入文本等任务。
  • 屏幕截图输入:模型仅依赖屏幕截图作为输入,无需额外的文本表征,如HTML,使其在多种设备上应用灵活。
  • 高分辨率处理:支持高达1120×1120像素的高分辨率图像输入,能够处理更复杂的视觉信息。
  • 双语交互:支持中文和英文的屏幕截图和语言交互,增强了模型的国际化应用能力。
  • 预测GUI操作:根据用户指定的任务和历史操作,模型能够预测下一步的GUI操作。
  • 自动化任务执行:CogAgent-9B能模拟用户操作,自动化执行一系列GUI任务。
  • 跨平台应用:适用于个人电脑、手机、车机等多种基于GUI交互的场景。
  • 性能领先:在多个GUI操作数据集上取得了领先成绩,显示了其卓越的性能。

CogAgent-9B 的技术原理

  • 视觉语言模型(VLM):CogAgent-9B构建在强大的视觉语言模型GLM-4V-9B之上,能够处理视觉数据(如屏幕截图)和文本信息,实现对GUI元素的理解和操作。
  • 双流注意力机制:CogAgent-9B采用双流注意力机制,将视觉元素(例如按钮和图标)映射到它们的文本标签或描述,增强了模型预测用户意图和执行相关操作的能力。
  • GUI Grounding预训练:在预训练阶段,CogAgent-9B引入了GUI Grounding预训练方法,通过屏幕截图和layout对,构造界面子区域和layout表征的对应关系,提升模型对视觉输入和GUI界面的基础理解能力。
  • 数据集丰富与完善:CogAgent-9B团队广泛收集并整合了多种数据集,包括无监督数据和GUI指令微调数据集,这些数据集的丰富性和多样性为模型提供了广泛的训练和测试基础。
  • 预训练与后训练策略优化:CogAgent-9B在预训练阶段引入了GUI Referring Expression Generation (REG)和GUI Referring Expression Comprehension (REC)任务,以构建界面子区域与布局表征的对应关系。在后训练阶段,采用了更科学的GUI agent后训练策略,使模型具备了更强的分析、推理、预测能力。
  • 模型推理及思维链优化:CogAgent-9B将思维链分解为Status(当前屏幕状态)、Plan(全局计划)、Action(下一步自然语言描述)、Operation(下一步形式语言描述),并通过随机采样混合多种模式训练数据,灵活调整和控制推理过程中的实际输出。
  • 动作空间完善:CogAgent-9B明确了基础动作空间,新增了LLM、QUOTE_TEXT、LAUNCH等高级动作,增强了模型的使用工具和交互能力。

如何运行 CogAgent-9B

环境配置

确保已安装 Python 3.10.16 或更高版本,然后安装以下依赖:

pip install -r requirements.txt

本地推理

基于 transformers 进行本地推理,可以运行以下命令:

python inference/cli_demo.py --model_dir THUDM/cogagent-9b-20241220 --platform "Mac" --max_length 4096 --top_k 1 --output_image_path ./results --format_key status_action_op_sensitive

在线Web演示

运行在线Web演示,支持连续图像上传进行交互推理:

python inference/web_demo.py --host 0.0.0.0 --port 7860 --model_dir THUDM/cogagent-9b-20241220 --format_key status_action_op_sensitive --platform "Mac" --output_dir ./results

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
10天前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
98 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
13天前
|
人工智能 自然语言处理 搜索推荐
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
86 23
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
|
8天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
716 13
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
5天前
|
人工智能 开发框架 数据可视化
Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用
Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。
115 27
|
4天前
|
存储 人工智能 NoSQL
Airweave:快速集成应用数据打造AI知识库的开源平台,支持多源整合和自动同步数据
Airweave 是一个开源工具,能够将应用程序的数据同步到图数据库和向量数据库中,实现智能代理检索。它支持无代码集成、多租户支持和自动同步等功能。
47 14
|
7天前
|
人工智能 自然语言处理 数据可视化
Cursor 为低代码加速,AI 生成应用新体验!
通过连接 Cursor,打破了传统低代码开发的局限,我们无需编写一行代码,甚至连拖拉拽这种操作都可以抛诸脑后。只需通过与 Cursor 进行自然语言对话,用清晰的文字描述自己的应用需求,就能轻松创建出一个完整的低代码应用。
519 8
|
5天前
|
人工智能 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.4 应用实践之 AI大模型外脑
PolarDB向量数据库插件通过实现通义大模型AI的外脑,解决了通用大模型无法触达私有知识库和产生幻觉的问题。该插件允许用户将新发现的知识和未训练的私有知识分段并转换为向量,存储在向量数据库中,并创建索引以加速相似搜索。当用户提问时,系统将问题向量化并与数据库中的向量进行匹配,找到最相似的内容发送给大模型,从而提高回答的准确性和相关性。此外,PolarDB支持多种编程语言接口,如Python,使数据库具备内置AI能力,极大提升了数据处理和分析的效率。
26 4
|
5天前
|
人工智能 自然语言处理 搜索推荐
现在最火的AI是怎么应用到体育行业的
AI在体育行业的应用日益广泛,涵盖数据分析、伤病预防、观众体验、裁判辅助等多个领域。通过传感器和可穿戴设备,AI分析运动员表现,提供个性化训练建议;预测伤病风险,制定康复方案;优化比赛预测和博彩指数;提升观众的个性化内容推荐和沉浸式观赛体验;辅助裁判判罚,提高准确性;发掘青训人才,优化训练计划;智能管理场馆运营和票务;自动生成媒体内容,提供实时翻译;支持电竞分析和虚拟体育赛事;并为运动员提供个性化营养和健康管理方案。未来,随着技术进步,AI的应用将更加深入和多样化。
|
22天前
|
人工智能 自然语言处理 JavaScript
微软开源课程!21节课程教你开发生成式 AI 应用所需了解的一切
微软推出的生成式 AI 入门课程,涵盖 21 节课程,帮助开发者快速掌握生成式 AI 应用开发,支持 Python 和 TypeScript 代码示例。
249 14
|
20天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
118 9

热门文章

最新文章