基于EO平衡优化器算法的目标函数最优值求解matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。

1.程序功能描述
基于EO平衡优化器算法的目标函数最优值求解matlab仿真。提供九个测试函数,分别对九个测试函数仿真输出最优解以及对应的优化收敛曲线。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行
9555ae9721243899b5fc70a68b3466e6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序
```while j2=GP);
G0 = GCP.(Ceq-lambda.Xx(i,:));
G = G0.F;
Xx(i,:)= Ceq+(Xx(i,:)-Ceq).
F+(G./lambdaV).(1-F);
end
j2=j2+1;
yfit_set2(j1)=yfit1;
yfit_set1(j2)=yfit1;
end
figure(1);
subplot(3,3,sel)
semilogy(yfit_set1,'linewidth',2)
grid on
xlabel('EO迭代次数');
ylabel('适应度曲线');
title(['F',num2str(sel),'的最优解:',num2str(yfit_set1(end))]);
% disp('优化结果的均值和方差:');
% mean(yfit_set2)
% std(yfit_set2)

end
47

```

4.本算法原理
进化优化(Evolutionary Optimization, EO)是一类借鉴自然界生物进化过程的全局优化方法,旨在解决复杂问题的最优化问题。平衡优化器算法是EO的一个分支,它通过模拟生态系统的平衡机制,促进种群的多样性与收敛性之间的平衡,从而高效地搜索解空间并找到全局或近全局最优解。

   平衡优化器算法的核心在于设计一种机制,该机制能够促使搜索过程中的个体(解)分布趋向于一个既不过分集中也不过分分散的状态,即维持种群内部的“生态平衡”。这通常通过引入动态调整策略来实现,比如调节搜索步长、变异率、交叉概率等,确保算法既能快速探索解空间,又能有效地利用已发现的良好解。

    在平衡优化器中,可以借鉴粒子群优化(PSO)的思想,但增加平衡机制。平衡优化可能通过动态调整ω,c1​,c2​等参数,或引入额外的平衡项,如:

34e999a06bd409fdd2fb0c135fb8d3a7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
24c20a74b38dc1296f3ad95eed0f4a16_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   这里,α、λ是控制平衡探索与开发的参数,t是当前迭代次数,r是随机数,旨在鼓励粒子探索更广阔的区域。

  平衡优化器还可能采用更复杂的平衡策略,如自适应变异率、精英保留策略、局部搜索与全局搜索的结合等,这些策略往往依赖于当前种群的状态和算法的迭代进度,通过数学模型动态调整。
相关文章
|
23天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
3月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
6月前
|
算法
m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法,优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码,而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程,根据误码率评估性能并更新解码参数。最终,展示了迭代次数与优化过程的关系,并绘制了SNR与误码率曲线。
58 2
|
6月前
|
算法
基于PSO粒子群优化的PID控制器参数整定算法matlab仿真
该文探讨了使用PSO(粒子群优化)算法优化PID控制器参数的方法。通过PSO迭代,不断调整PID控制器的Kp、Ki、Kd增益,以减小控制误差。文中提供了MATLAB2022a版本的核心代码,展示了参数优化过程及结果。系统仿真图像显示了参数随迭代优化的变化。PID控制器结合PSO算法能有效提升控制性能,适用于复杂系统的参数整定,未来研究可关注算法效率提升和应对不确定性。
|
6月前
|
算法
m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了Offset Min-Sum (OMS)译码算法与粒子群优化(PSO)结合,以优化偏移参数,提升LDPC码解码性能。PSO通过迭代寻找最小化误码率(BER)的最佳偏移量。核心程序运用PSO进行参数更新和适应度函数(BER)评估,最终在不同信噪比下展示OMS解码性能,并保存结果。
83 0
|
7月前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
84 1
|
数据采集 监控 算法
【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)
【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)
【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)
|
算法
优化算法——全局灵敏度分析算法(PAWN )(Matlab代码实现)
优化算法——全局灵敏度分析算法(PAWN )(Matlab代码实现)
262 0
|
机器学习/深度学习 算法
【路径优化】基于人工蜂群(ABC)算法和粒子群优化算法的组合求解路径优化问题(Matlab代码实现)
【路径优化】基于人工蜂群(ABC)算法和粒子群优化算法的组合求解路径优化问题(Matlab代码实现)
195 0

热门文章

最新文章