VE-Bench:北京大学开源首个针对视频编辑质量的评估指标,从多角度考虑审美并准确地评估视频编辑效果

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 北京大学开源了首个针对视频编辑质量评估的新指标 VE-Bench,旨在通过人类感知一致的度量标准,更准确地评估视频编辑效果。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

原文链接:https://mp.weixin.qq.com/s/n7_9RwaZD7IhQr7Fe2pQHQ


🚀 快速阅读

  1. 功能:VE-Bench 包含视频质量评估模型和数据库,用于评估文本驱动的视频编辑任务。
  2. 技术:采用深度学习算法和多模态学习框架,评估文本-视频一致性和源视频-编辑后视频动态相关性。
  3. 应用:适用于电影制作、短视频平台内容优化和广告行业精准营销。

正文(附运行示例)

VE-Bench 是什么

公众号: 蚝油菜花 - VE-Bench

VE-Bench 是北京大学研究团队 MMCAL 发布的首个专门针对视频编辑质量评估的指标。其设计目标是与人类感知能力高度一致,更准确地评估视频编辑效果。VE-Bench 不仅考虑了传统视频质量评估方法强调的审美、失真等视觉质量指标,还专注于文本与视频的对齐以及源视频与编辑后视频之间的相关性建模。

VE-Bench 包含两个主要部分:VE-Bench DB 和 VE-Bench QA。VE-Bench DB 是一个视频质量评估数据库,包含了丰富的源视频、编辑指令、不同视频编辑模型的编辑结果,以及24名不同背景参与者的主观评分样本,共计28,080个评分样本。VE-Bench QA 是一个量化的、与人类感知一致的度量工具,专门用于文本驱动的视频编辑任务。

VE-Bench 的主要功能

  • 视频质量评估模型(VE-Bench QA):为编辑后的视频提供与人类感知一致的度量标准,考虑了传统视频质量评估方法强调的审美、失真等视觉质量指标,还专注于文本与视频的对齐以及源视频与编辑后视频之间的相关性建模。
  • 视频质量评估数据库(VE-Bench DB):包含了丰富的源视频、编辑指令、不同视频编辑模型的编辑结果,以及24名不同背景参与者的主观评分样本,共计28,080个评分样本。
  • 文本-视频一致性评估:基于BLIP进行视频-文本相关性建模,通过在BLIP视觉分支的基础上加入Temporal Adapter将其扩展到三维,并与文本分支的结果通过交叉注意力得到输出。
  • 源视频-编辑后视频动态相关性评估:通过时空Transformer将源视频和编辑后视频投影到高维空间,在此基础上拼接后利用注意力机制计算二者相关性,最后通过回归计算得到相应输出。
  • 传统视觉质量评估:参考了过往自然场景视频质量评价的优秀工作DOVER,通过在美学和失真方面预训练过后的骨干网络输出相应结果。
  • 多维度评估:从文本-视频一致性、源视频-编辑后视频动态相关性以及传统视觉质量三个维度对文本驱动的视频编辑进行评估。

VE-Bench 的技术原理

  • 线性层回归:最终各个分支的输出通过线性层回归得到最终分数。
  • 深度学习算法:通过对大量真实世界视频样本的学习,建立了能够模拟人类视觉和听觉系统的模型。
  • 多模态学习框架:能同时处理视频中的图像、音频和文本信息,通过大量的真实世界视频样本训练,学会了如何分析视频的技术参数,捕捉那些难以量化的艺术美感和情感表达。

如何运行 VE-Bench

VE-Bench 可以通过 pip 命令安装,并支持视频对的比较评估。以下是一个简单的使用示例:

pip install vebench
from vebench import VEBenchModel

evaluator = VEBenchModel()

score1 = evaluator.evaluate('A black-haired boy is turning his head', 'assets/src.mp4', 'assets/dst.mp4')
score2 = evaluator.evaluate('A black-haired boy is turning his head', 'assets/src.mp4', 'assets/dst2.mp4')
print(score1, score2) # Score1: 1.3563, Score2: 0.66194

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
22小时前
|
人工智能 测试技术
VideoPhy:UCLA 和谷歌联合推出评估视频生成模型物理模拟能力的评估工具,衡量模型生成的视频是否遵循现实世界的物理规则
VideoPhy 是 UCLA 和谷歌联合推出的首个评估视频生成模型物理常识能力的基准测试,旨在衡量模型生成的视频是否遵循现实世界的物理规则。
18 9
VideoPhy:UCLA 和谷歌联合推出评估视频生成模型物理模拟能力的评估工具,衡量模型生成的视频是否遵循现实世界的物理规则
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
NeurIPS 2024:真实世界复杂任务,全新基准GTA助力大模型工具调用能力评测
在NeurIPS 2024会议上,GTA(General Tool Agents Benchmark)基准测试被提出,旨在评估大型语言模型(LLM)在真实世界复杂任务中的工具调用能力。GTA采用真实用户查询、真实部署工具和多模态输入,全面评估LLM的推理和执行能力。结果显示,现有LLM在真实世界任务中仍面临巨大挑战,为未来研究提供了重要方向。
40 13
|
3月前
|
存储 编解码 算法
微帧科技:综合多项指标评价视频质量,才能更接近主观感受
视频质量评价指标如PSNR、SSIM和VMAF是衡量画面质量的重要工具,但不应成为视频工作者的唯一目标。微帧致力于优化画质,提升观看体验,强调综合评估指标,以实现最接近人眼主观感受的效果。本文探讨了PSNR avg.MSE与PSNR avg.log的区别,以及VMAF的优势与不足。
|
4月前
|
测试技术
LLM数学性能暴涨168%,微软14人团队力作!合成数据2.0秘诀曝光,智能体生成教学
【9月更文挑战第14天】微软研究团队发布了一篇介绍新型框架"AgentInstruct"的论文,该框架旨在通过自动生成高质量合成数据,推动语言模型发展。AgentInstruct仅需原始数据源即可创建多样化的合成数据,减少人工工作量。研究团队基于此框架构建了含2500万训练对的数据集,展示了其在多种技能教学中的潜力。经微调后的Mistral-7b模型演进为Orca-3,在多个基准测试中显著超越同类模型。尽管如此,AgentInstruct仍面临创建流程耗时及合成数据复杂性不足等问题。论文详情见:https://arxiv.org/pdf/2407.03502
89 2
|
5月前
|
机器学习/深度学习 人工智能
高于临床测试3倍准确率!剑桥大学开发AI模型,提前6年预测阿尔茨海默症
【8月更文挑战第9天】剑桥大学研发的人工智能模型在预测阿尔茨海默症方面取得突破,准确率比传统临床测试高三倍,能提前六年预测疾病发生。该模型基于深度学习,利用大量临床及神经影像数据识别生物标志物,预测准确性达80%。这一成果有望促进早期干预,改善患者预后,但仍需更大规模研究验证,并解决隐私与公平性等问题。论文已发表于《The Lancet》子刊。
63 6
|
6月前
|
机器学习/深度学习 自然语言处理 Ubuntu
FunAudioLLM 技术评测报告
【7月更文第31天】随着人工智能技术的迅速发展,语音识别和语音合成技术已经成为日常生活中不可或缺的一部分。FunAudioLLM 作为一款开源的语音大模型,致力于提供高质量的语音服务,支持多种应用场景。本次评测将重点评估 FunAudioLLM 在性能、功能及技术先进性方面的能力,并将其与国际知名的大规模语音模型进行比较。
170 2
|
6月前
|
人工智能
AIGC生图的自动化质量评估(2)
AIGC生图的自动化质量评估
297 6
|
6月前
|
机器学习/深度学习 编解码 算法
AIGC生图的自动化质量评估(1)
AIGC生图的自动化质量评估
211 6
|
8月前
|
数据可视化 算法 测试技术
R语言IRT理论:扩展Rasch模型等级量表模型lltm、 rsm 和 pcm模型分析心理和教育测验数据可视化
R语言IRT理论:扩展Rasch模型等级量表模型lltm、 rsm 和 pcm模型分析心理和教育测验数据可视化
|
8月前
|
机器学习/深度学习 数据采集 人工智能
ICLR 2024:RLHF有了通用平台和基准,天大开源,专攻现实决策场景
【4月更文挑战第21天】天津大学在ICLR 2024发布RLHF新框架Uni-RLHF,以人类反馈引导强化学习,降低奖励函数设计需求,适应现实决策场景。该框架提供通用平台和基准,支持大规模众包注释,促进研究。尽管面临准确捕捉人类反馈、数据质量和多任务处理等挑战,但开源特性加速了学术进步。[链接](https://arxiv.org/abs/2402.02423)
109 0

热门文章

最新文章