全球加速

首页 标签 全球加速
【车间调度】基于GA/PSO/SA/ACO/TS优化算法的车间调度比较(Matlab代码实现)
【车间调度】基于GA/PSO/SA/ACO/TS优化算法的车间调度比较(Matlab代码实现)
阿里云全球加速GA
阿里云全球加速GA(Global Accelerator)是一款覆盖全球的互联网加速服务,主要目的是为了减少网络延迟、丢包,提高网络传输效率。这款服务可以应用于游戏加速、应用加速等场景,为用户构建一个高性能、高可靠、高安全、易部署的加速网络。
基于GA优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,深度学习在时间序列分析上取得了显著的成果,尤其是卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制(Attention)的结合使用
基于GA-PSO遗传粒子群混合优化算法的CDVRP问题求解matlab仿真
该文介绍了车辆路径问题(Vehicle Routing Problem, VRP)中的组合优化问题CDVRP,旨在找寻满足客户需求的最优车辆路径。在MATLAB2022a中运行测试,结果显示了算法过程。核心程序运用了GA-PSO混合算法,包括粒子更新、交叉、距离计算及变异等步骤。算法原理部分详细阐述了遗传算法(GA)的编码、适应度函数、选择、交叉和变异操作,以及粒子群优化算法(PSO)的粒子表示、速度和位置更新。最后,GA-PSO混合算法结合两者的优点,通过迭代优化求解CDVRP问题。
基于GA遗传优化的CNN-GRU的时间序列回归预测matlab仿真
摘要: 使用MATLAB2022a,展示了一种基于遗传算法优化的CNN-GRU时间序列预测模型,融合遗传算法与深度学习,提升预测精度。遗传算法负责优化模型超参数,如学习率和神经元数量,以最小化均方误差。CNN负责特征提取,GRU处理序列数据中的长期依赖。流程包括初始化、评估、选择、交叉、变异和迭代,旨在找到最佳超参数组合。
免费试用