基于遗传算法GA算法优化BP神经网络(Python代码实现)

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 基于遗传算法GA算法优化BP神经网络(Python代码实现)

💥1 概述

   BP-GA算法的设计︰基于遗传算法的BP神经网络算法(以下简称BP-GA)就是在BP神经网络的学习过程中,将权重和阀值描述为染色体,并选取适宜的适应函数,然后进行GA迭代,直到某种意义上的收敛.与普通BP学习算法相比,算法 BP一GA的优势在于可以处理一些传统方法不能处理的例子,例如不可导的特性函数(传递函数)或者没有梯度信息存在的节点.该算法涉及到两个关键问题,分别是染色体位串与权系值的编码映射和评价函数。



📚2 运行结果

部分代码:

def load_data_wrapper(filename):
    lineData = []
    with open(filename) as txtData:
        lines = txtData.readlines()
        for line in lines:
            linedata = line.strip().split(',')
            lineData.append(linedata)
    return lineData
# 提出特征和标签,特征做输入,标签为输出
def splitData(dataset):
    Character= []
    Label = []
    for i in range(len(dataset)):
        Character.append([float(tk) for tk in dataset[i][1:-1]])
        Label.append(float(dataset[i][-1]))
    return Character, Label
#输入特征数据归一化
def max_min_norm_x(dataset):
    min_data = []
    for i in range(len(dataset)):
        min_data.append(min(dataset[i]))
    new_min = min(min_data)
    max_data = []
    for i in range(len(dataset)):
        max_data.append(max(dataset[i]))
    new_max = max(max_data)
    data = np.array(dataset)
    data_x =[]
    for x in np.nditer(data, op_flags=['readwrite']):
        #x[...] = 2 * (x -new_min)/(new_max-new_min)-1
        x[...] = (x - new_min) / (new_max - new_min)
        #print('x[...]:',x[...])
        data_x.append(x[...])
    data_x3 = []
    for index in range(0, len(data_x), 3):
        data_x3.append([data_x[index], data_x[index+1], data_x[index+2]])
    #print("data_x3:",data_x3)
    return data_x3


def load_data_wrapper(filename):
    lineData = []
    with open(filename) as txtData:
        lines = txtData.readlines()
        for line in lines:
            linedata = line.strip().split(',')
            lineData.append(linedata)
    return lineData
# 提出特征和标签,特征做输入,标签为输出
def splitData(dataset):
    Character= []
    Label = []
    for i in range(len(dataset)):
        Character.append([float(tk) for tk in dataset[i][1:-1]])
        Label.append(float(dataset[i][-1]))
    return Character, Label
#输入特征数据归一化
def max_min_norm_x(dataset):
    min_data = []
    for i in range(len(dataset)):
        min_data.append(min(dataset[i]))
    new_min = min(min_data)
    max_data = []
    for i in range(len(dataset)):
        max_data.append(max(dataset[i]))
    new_max = max(max_data)
    data = np.array(dataset)
    data_x =[]
    for x in np.nditer(data, op_flags=['readwrite']):
        #x[...] = 2 * (x -new_min)/(new_max-new_min)-1
        x[...] = (x - new_min) / (new_max - new_min)
        #print('x[...]:',x[...])
        data_x.append(x[...])
    data_x3 = []
    for index in range(0, len(data_x), 3):
        data_x3.append([data_x[index], data_x[index+1], data_x[index+2]])
    #print("data_x3:",data_x3)
    return data_x3


🎉3 参考文献

[1]王崇骏,于汶滌,陈兆乾,谢俊元.一种基于遗传算法的BP神经网络算法及其应用[J].南京大学学报:自然科学版,2003,39(5):459-466


[2]潘昊,王晓勇,陈琼,黄少銮.基于遗传算法的BP神经网络技术的应用[J].计算机应用,2005,25(12):2777-2779


🌈4 Python代码实现

目录
打赏
0
0
0
0
77
分享
相关文章
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
25 12
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
31 9
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
107 9
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
86 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
88 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等