基于GA-PSO遗传粒子群混合优化算法的CDVRP问题求解matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 该文介绍了车辆路径问题(Vehicle Routing Problem, VRP)中的组合优化问题CDVRP,旨在找寻满足客户需求的最优车辆路径。在MATLAB2022a中运行测试,结果显示了算法过程。核心程序运用了GA-PSO混合算法,包括粒子更新、交叉、距离计算及变异等步骤。算法原理部分详细阐述了遗传算法(GA)的编码、适应度函数、选择、交叉和变异操作,以及粒子群优化算法(PSO)的粒子表示、速度和位置更新。最后,GA-PSO混合算法结合两者的优点,通过迭代优化求解CDVRP问题。

1.程序功能描述
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。其中,CDVRP是一个经典的组合优化问题,它要求确定一组最优路径,使得一定数量的车辆从起点出发,服务一系列客户点,并最终返回起点,同时满足车辆的容量限制和总行驶距离最小化的目标。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg

3.核心程序
...........................................

while gen <= Iters
    gen
    %粒子更新
    for i=1:Npop
        %交叉
        Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Pbest(i,2:end-1)); 
        %计算距离
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);  
        if Popd(i) < Pdbest(i)  
Pbest(i,:)=Pops(i,:);  
            Pdbest(i)=Popd(i); 
        end

        %更新Gbest
        [mindis,index] = min(Pdbest); 

        if mindis<Gdbest
Gbest = Pbest(index,:); 
Gdbest = mindis;  
        end

        %粒子与Gbest交叉
        Pops(i,2:end-1)=func_cross(Pops(i,2:end-1),Gbest(2:end-1));

        %粒子变异
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);  
        if Popd(i) < Pdbest(i)  
Pbest(i,:)=Pops(i,:);  
            Pdbest(i)=Popd(i);  
        end

        %变异
Pops(i,:)=func_Mut(Pops(i,:));

        % 新路径长度变短则记录至Pbest
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);%最短距离
        if Popd(i) < Pdbest(i)  
Pbest(i,:)=Pops(i,:);  
            Pdbest(i)=Popd(i);  
        end

        %存储此代最短距离
        [mindis,index] = min(Pdbest);  
        %更新迭代次数
        if mindis<Gdbest
Gbest = Pbest(index,:);  
Gdbest = mindis;  
        end
    end

gbest(gen)=Gdbest;
    gen=gen+1;
end
15

4.本算法原理
在CDVRP问题中,GA-PSO混合算法的具体实现需要针对问题的特点进行相应调整。例如,在编码阶段,可以采用基于客户序列的编码方式,每个解表示为一个客户序列,表示车辆的访问顺序。适应度函数可以定义为路径总成本的倒数或负数,以最小化行驶距离为目标。遗传操作和粒子群操作需要根据问题的约束条件(如车辆容量限制)进行定制,以确保生成的解是可行的。

4.1 遗传算法(Genetic Algorithm, GA)

   遗传算法是一种模拟自然选择和遗传学机制的优化算法。在求解CVRP问题时,GA通过编码生成初始种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。

   编码方式:采用自然数编码,每个客户的编号代表一个基因,一条路径则由一串基因组成。
  初始种群生成:随机生成一定数量的初始路径,构成初始种群。
  适应度函数:以适应度函数来衡量每个个体的优劣。在CVRP问题中,适应度函数通常取为总行驶距离的倒数。
   选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
  交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
  变异操作:通过随机交换路径中两个客户的位置来实现变异。

4.2 粒子群优化算法(Particle Swarm Optimization, PSO)

   粒子群优化算法是一种模拟鸟群觅食行为的优化算法。在求解CVRP问题时,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。

   粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中客户的排列顺序决定。
   速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:v[i][j] = w * v[i][j] + c1 * rand() * (pbest[i][j] - x[i][j]) + c2 * rand() * (gbest[j] - x[i][j]),其中v[i][j]表示第i个粒子在第j维上的速度,x[i][j]表示第i个粒子在第j维上的位置,pbest[i][j]表示第i个粒子在第j维上的历史最优位置,gbest[j]表示群体在第j维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
    位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:x[i][j] = x[i][j] + v[i][j]。需要注意的是,在更新位置时要保证新生成的路径满足CVRP问题的约束条件。

4.3 GA-PSO混合优化算法

   GA-PSO混合优化算法结合了遗传算法和粒子群优化算法的优点,通过GA的全局搜索能力和PSO的局部搜索能力来提高求解CVRP问题的效率和质量。具体步骤如下:

初始化:生成初始种群,并随机初始化粒子的位置和速度。
适应度评估:计算每个个体的适应度值。
选择操作:根据适应度值选择优秀的个体进入下一代种群。
交叉操作:对选中的个体进行交叉操作,生成新的个体。
变异操作:对新生成的个体进行变异操作。
PSO优化:将新生成的个体作为粒子群中的粒子,进行速度和位置的更新操作。同时记录每个粒子的历史最优位置和群体最优位置。
终止条件判断:判断是否达到终止条件(如达到最大迭代次数或找到满足精度要求的最优解)。若满足终止条件则结束算法;否则返回步骤2继续迭代优化。

相关文章
|
11天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
13天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
100 1
|
12天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
11天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
102 14
|
14天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
129 15
|
16天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
105 11
|
16天前
|
机器学习/深度学习 传感器 算法
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
|
16天前
|
算法 安全 BI
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
11天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)

热门文章

最新文章