基于GA优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,深度学习在时间序列分析上取得了显著的成果,尤其是卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制(Attention)的结合使用

1.算法运行效果图预览
ga优化前:

image.png
image.png

ga优化后:

image.png
image.png

2.算法运行软件版本
matlab2022a

3.算法理论概述
时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,深度学习在时间序列分析上取得了显著的成果,尤其是卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制(Attention)的结合使用。

3.1卷积神经网络(CNN)在时间序列中的应用
在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

image.png

   CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

3.2 长短时记忆网络(LSTM)处理序列依赖关系
LSTM单元能够有效捕捉时间序列中的长期依赖关系。在一个时间步t,LSTM的内部状态h_t和隐藏状态c_t更新如下:
image.png

   长短时记忆网络是一种特殊的循环神经网络(RNN),设计用于解决长序列依赖问题。在时间序列预测中,LSTM能够有效地捕捉时间序列中的长期依赖关系。

3.3 注意力机制(Attention)
注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。

   CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

image.png

   遗传算法作为一种全局优化方法,用于调整CNN-LSTM-Attention模型的超参数,比如学习率、层数、节点数等。其基本流程包括:

初始化种群(一组超参数编码为个体)
适应度评估(在验证集上计算模型性能)
选择(根据适应度保留优秀个体)
交叉(交换个体的部分超参数)
变异(随机改变个体的部分超参数)
终止条件检查(达到预定代数或满足终止条件时停止迭代)
通过上述循环迭代优化,GA帮助找到能最大化模型预测性能的超参数组合。

4.部分核心程序

```while gen < MAXGEN
gen
Pe0 = 0.999;
pe1 = 0.001;

  FitnV=ranking(Objv);    
  Selch=select('sus',Chrom,FitnV);    
  Selch=recombin('xovsp', Selch,Pe0);   
  Selch=mut( Selch,pe1);   
  phen1=bs2rv(Selch,FieldD);   

  for a=1:1:NIND  
      X           = phen1(a,:);
      %计算对应的目标值
      [epls]      = func_obj(X);
      E           = epls;
      JJ(a,1)     = E;
  end 

  Objvsel=(JJ);    
  [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
  gen=gen+1; 


  Error2(gen) = mean(JJ);

end
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X = phen1(I,:);

LR = X(1);
numHiddenUnits = floor(X(2))+1;% 定义隐藏层中LSTM单元的数量

%CNN-GRU-ATT
layers = func_model2(Dim,numHiddenUnits);

%设置
%迭代次数
%学习率为0.001
options = trainingOptions('adam', ...
'MaxEpochs', 1500, ...
'InitialLearnRate', LR, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.1, ...
'LearnRateDropPeriod', 1000, ...
'Shuffle', 'every-epoch', ...
'Plots', 'training-progress', ...
'Verbose', false);

%训练
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);

%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1Vmax2;
T_sim2=Dpre2
Vmax2;

%网络结构
analyzeNetwork(Net)

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on
subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);

save R2.mat Num2 Tat_test T_sim2

```

相关文章
|
4天前
|
算法
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
4天前
|
存储 算法
基于布谷鸟搜索的多目标优化matlab仿真
该程序运用布谷鸟搜索算法进行多目标优化,设置三个目标函数,生成三维优化曲面和收敛曲线。在MATLAB2022a中运行,显示了迭代过程中的优化结果图。算法基于布谷鸟的寄生繁殖和列维飞行行为,通过非支配排序和拥挤度计算处理多目标问题。迭代中,新解不断被评估、更新并加入帕累托前沿,最终输出帕累托前沿作为最优解集。
|
18小时前
|
机器学习/深度学习 存储 算法
基于SFLA算法的神经网络优化matlab仿真
**摘要:** 使用MATLAB2022a,基于SFLA算法优化神经网络,降低训练误差。程序创建12个神经元的前馈网络,训练后计算性能。SFLA算法寻找最优权重和偏置,更新网络并展示训练与测试集的预测效果,以及误差对比。SFLA融合蛙跳与遗传算法,通过迭代和局部全局搜索改善网络性能。通过调整算法参数和与其他优化算法结合,可进一步提升模型预测精度。
|
15天前
|
机器学习/深度学习
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
|
14天前
|
机器学习/深度学习 算法 计算机视觉
卷积神经网络(CNN)的工作原理深度解析
【6月更文挑战第14天】本文深度解析卷积神经网络(CNN)的工作原理。CNN由输入层、卷积层、激活函数、池化层、全连接层和输出层构成。卷积层通过滤波器提取特征,激活函数增加非线性,池化层降低维度。全连接层整合特征,输出层根据任务产生预测。CNN通过特征提取、整合、反向传播和优化进行学习。尽管存在计算量大、参数多等问题,但随着技术发展,CNN在计算机视觉领域的潜力将持续增长。
|
15天前
|
机器学习/深度学习 Shell
【从零开始学习深度学习】22. 卷积神经网络(CNN)中填充(padding)与步幅(stride)详解,填充、步幅、输入及输出之间的关系
【从零开始学习深度学习】22. 卷积神经网络(CNN)中填充(padding)与步幅(stride)详解,填充、步幅、输入及输出之间的关系
|
15天前
|
机器学习/深度学习
【从零开始学习深度学习】21. 卷积神经网络(CNN)之二维卷积层原理介绍、如何用卷积层检测物体边缘
【从零开始学习深度学习】21. 卷积神经网络(CNN)之二维卷积层原理介绍、如何用卷积层检测物体边缘
|
22天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
1月前
|
机器学习/深度学习 存储 算法
卷积神经网络(CNN)的数学原理解析
卷积神经网络(CNN)的数学原理解析
61 1
卷积神经网络(CNN)的数学原理解析
|
7天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深入浅出:理解和实现深度学习中的卷积神经网络(CNN)
在当今的数据驱动世界,深度学习已经成为许多领域的关键技术。本文将深入探讨卷积神经网络(CNN)的原理、结构和应用,旨在帮助读者全面理解这项强大的技术,并提供实际的实现技巧。
31 0