深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
深度学习训练时混合精度的作用
在深度学习训练过程中,混合精度(Mixed Precision)是指同时使用不同的数值精度(如16位浮点数和32位浮点数)来进行计算。
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
AI计算机视觉笔记十四:YOLOV5环境搭建及测试全过程
本文详细记录了在Windows 10环境下从零开始搭建yolov5环境并进行测试的全过程,涵盖环境配置、依赖安装及模型测试等关键步骤。文章首先介绍了所需环境(Python 3.8、yolov5-5.0),接着详细说明了如何使用Miniconda3创建与激活虚拟环境,并通过具体命令演示了如何下载安装yolov5及相关依赖库。最后,通过一系列命令展示了如何下载预训练模型并对示例图像进行目标检测,同时解决了一些常见错误。适合初学者跟随实践。如需转载,请注明原文出处。
AI计算机视觉笔记十二:基于 LeNet5 的手写数字识别及训练
本文档介绍了如何使用PyTorch框架复现经典的LeNet5模型,并通过MNIST数据集进行训练与测试。首先,创建虚拟环境并安装所需库,接着下载MNIST数据集。训练部分涉及四个主要文件:`LeNet5.py`、`myDatast.py`、`readMnist.py` 和 `train.py`。通过这些文件搭建模型并完成训练过程。最后,通过测试脚本验证模型准确性,结果显示准确率达到0.986,满足预期需求。文档还提供了详细的环境配置和代码实现细节。
压缩大型语言模型(LLMs):缩小10倍、性能保持不变
尽管大规模语言模型(LLMs)在多种应用场景中表现出色,但其庞大的规模也带来了实际部署难题。本文探讨了通过模型压缩技术解决这些问题的方法,介绍了量化、剪枝和知识蒸馏三种主要压缩技术,并通过具体Python代码示例展示了如何将一个100M参数的文本分类模型压缩至52.8M参数,再通过4位量化进一步减小至原来的1/7,同时保持甚至提升性能。示例代码展示了从数据预处理、模型训练到评估的完整流程,证明了压缩技术的有效性。