性能测试指标拟定参考
本文介绍性能测试关键指标与实施要点,涵盖用户数、业务量、核心场景及性能指标(如TPS、响应时间、波动率)的调查方法,指导如何科学评估系统处理能力与稳定性。
大模型性能测试实战指南:从原理到落地的全链路解析
本文系统解析大模型性能测试的核心方法,涵盖流式响应原理、五大关键指标(首Token延迟、吐字率等)及测试策略,提供基于Locust的压测实战方案,并深入性能瓶颈分析与优化技巧。针对多模态新挑战,探讨混合输入测试与资源优化
大模型性能测试完全指南:从原理到实践
本文介绍了大模型性能测试的核心价值与方法,涵盖流式响应机制、PD分离架构、五大关键指标(如首Token延迟、吐字率等),并通过实战演示如何使用Locust进行压力测试。同时探讨了多模态测试的挑战与优化方向,帮助测试工程师成长为AI系统性能的“诊断专家”。
用 LLM 辅助性能测试报告生成
性能测试报告通常包含测试概述、方案说明、结果分析、问题定位、优化建议及上线评估等内容。报告编写面临数据分析复杂、撰写耗时、经验依赖等问题。引入大型语言模型(LLM),可实现报告智能生成,提升效率与专业度。LLM具备自然语言生成、数据归纳、专家知识迁移等能力,可适配多格式、多语言输出。通过构建LLM辅助的报告生成引擎,结合Prompt设计,可高效输出结构化报告。实践表明,LLM在测试结论总结、瓶颈分析与优化建议方面表现优异,为性能测试智能化升级提供有力支撑。
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。
阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!
流量洪峰应对术:Redis持久化策略与内存压测避坑指南
本文深入解析Redis持久化策略与内存优化技巧,涵盖RDB快照机制、AOF重写原理及混合持久化实践。通过实测数据揭示bgsave内存翻倍风险、Hash结构内存节省方案,并提供高并发场景下的主从复制冲突解决策略。结合压测工具链构建与故障恢复演练,总结出生产环境最佳实践清单。