性能测试

首页 标签 性能测试
# 性能测试 #
关注
5013内容
RunnerGo API 性能测试实战:从问题到解决的全链路剖析
API性能测试是保障软件系统稳定性与用户体验的关键环节。本文详细探讨了使用RunnerGo全栈测试平台进行API性能测试的全流程,涵盖测试计划创建、场景设计、执行分析及优化改进。通过电商平台促销活动的实际案例,展示了如何设置测试目标、选择压测模式并分析结果。针对发现的性能瓶颈,提出了代码优化、数据库调优、服务器资源配置和缓存策略等解决方案。最终,系统性能显著提升,满足高并发需求。持续关注与优化API性能,对系统稳定运行至关重要。
|
21天前
|
利用 RunnerGo 深度探索 API 性能测试:从理论到实践
API性能测试是保障应用稳定性和用户体验的关键环节。本文详细探讨了如何使用RunnerGo全栈测试平台进行高效API性能测试,涵盖测试计划创建、场景设计、参数配置到执行与分析全过程。通过电商平台促销活动案例,展示了高并发下的测试策略与优化措施,如代码与数据库查询优化、数据库连接池扩容、服务器资源配置调整及缓存策略实施等。最终显著提升系统性能,满足高并发需求。API性能测试需持续关注与优化,以适应业务发展和用户需求变化。
|
21天前
|
《揭秘性能测试:找准系统瓶颈的实用指南》
在软件开发中,性能测试与瓶颈分析是确保系统高效稳定运行的核心手段。性能测试通过模拟真实场景评估系统在不同负载下的表现,涵盖负载、压力、并发及耐久性测试等多个方面。这些测试帮助发现系统的性能极限与潜在问题,为优化提供依据。性能瓶颈可能源于硬件(如CPU、内存)或软件(如代码效率、数据库配置),需综合监控、日志分析和专业工具定位问题。针对瓶颈采取优化措施,如升级硬件、优化算法、调整数据库索引或改进系统架构,可显著提升性能。持续关注性能并进行优化,是保障用户体验与系统竞争力的关键。
|
2月前
|
Redis压测脚本及持久化机制
Redis压测脚本及持久化机制简介: Redis性能压测通过`redis-benchmark`工具进行,可评估读写性能。持久化机制包括无持久化、RDB(定期快照)和AOF(操作日志),以及两者的结合。RDB适合快速备份与恢复,但可能丢失数据;AOF更安全,记录每次写操作,适合高数据安全性需求。两者结合能兼顾性能与安全性,建议同时开启并定期备份RDB文件以确保数据安全。
|
3月前
| |
来自: PolarDB开源
PolarDB 开源基础教程系列 7.1 快速构建“海量逼真”数据
本文介绍了如何使用PostgreSQL和PolarDB快速生成“海量且逼真”的测试数据,以满足不同业务场景的需求。传统数据库测试依赖标准套件(如TPC-C、TPC-H),难以生成符合特定业务特征的复杂数据。通过自定义函数(如`gen_random_int`、`gen_random_string`等)、SRF函数(如`generate_series`)和pgbench工具,可以高效生成大规模、高仿真度的数据,并进行压力测试。文中还提供了多个示例代码展示.
|
3月前
|
基于DeepSeek的具身智能高校实训解决方案——从DeepSeek+机器人到通用具身智能
本实训方案围绕「多模态输入 -> 感知与理解 -> 行动执行 -> 反馈学习」的闭环过程展开。通过多模态数据的融合(包括听觉、视觉、触觉等),并结合DeepSeek模型和深度学习算法,方案实现了对自然语言指令的理解、物体识别和抓取、路径规划以及任务执行的完整流程。
MySQL原理简介—3.生产环境的部署压测
本文介绍了Java系统和数据库在高并发场景下的压测要点: 1. 普通系统在4核8G机器上每秒能处理几百个请求 2. 高并发下数据库建议使用8核16G或更高配置的机器 3. 数据库部署后需进行基准压测,以评估其最大承载能力 4. QPS和TPS的区别及重要性 5. 压测时需关注IOPS、吞吐量、延迟 6. 除了QPS和TPS,还需监控CPU、内存、磁盘IO、网络带宽 7. 影响每秒可处理并发请求数的因素包括线程数、CPU、内存、磁盘IO和网络带宽 8. Sysbench是数据库压测工具,可构造测试数据并模拟高并发场景 9. 在增加线程数量的同时,必须观察机器的性能,确保各硬件负载在合理范围
|
4月前
| |
来自: 数据库
探秘电商API:从测试到应用的深度解析与实战指南
电商API是电子商务背后的隐形引擎,支撑着从商品搜索、购物车更新到支付处理等各个环节的顺畅运行。它通过定义良好的接口,实现不同系统间的数据交互与功能集成,确保订单、库存和物流等信息的实时同步。RESTful、GraphQL和WebSocket等类型的API各自适用于不同的应用场景,满足多样化的需求。在测试方面,使用Postman、SoapUI和jMeter等工具进行全面的功能、性能和安全测试,确保API的稳定性和可靠性。未来,随着人工智能、大数据和物联网技术的发展,电商API将进一步智能化和标准化,为用户提供更个性化的购物体验,并推动电商行业的持续创新与进步。
|
4月前
| |
来自: 云原生
机房迁移,不同 Pod 副本请求耗时会相差数倍
客户机房迁移过程中,发现不同 Pod 副本耗时前后相差 5 倍,本文介绍如何通过 ARMS 代码热点功能进行快速定位。
|
4月前
|
内部干货 | 基于华为昇腾910B算力卡的大模型部署和调优-课程讲义
近日上海,TsingtaoAI为某央企智算中心交付华为昇腾910B算力卡的大模型部署和调优课程。课程深入讲解如何在昇腾NPU上高效地训练、调优和部署PyTorch与Transformer模型,并结合实际应用场景,探索如何优化和迁移模型至昇腾NPU平台。课程涵盖从模型预训练、微调、推理与评估,到性能对比、算子适配、模型调优等一系列关键技术,帮助学员深入理解昇腾NPU的优势及其与主流深度学习框架(如PyTorch、Deepspeed、MindSpore)的结合应用。
免费试用