机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
69093内容
淘宝/天猫按图搜索(拍立淘)API的深度解析与应用实践
在数字化时代,电商行业迅速发展,个性化、便捷性和高效性成为消费者新需求。淘宝/天猫推出的拍立淘API,利用图像识别技术,提供精准的购物搜索体验。本文深入探讨其原理、优势、应用场景及实现方法,助力电商技术和用户体验提升。
|
7天前
|
【AI系统】CANN 算子类型
本文介绍了算子的基本概念及其在编程和数学中的作用,重点探讨了CANN算子在AI编程和神经网络中的应用,特别是华为CANN算子在AI CPU上的架构和开发要求。CANN是华为推出的异构计算架构,旨在优化AI处理器的计算效率,支持多种AI框架,涵盖AI Core和AI CPU算子,以适应不同类型的计算需求。文中还详细说明了AI CPU算子的开发流程和适用场景,为开发者提供了宝贵的指导。
|
7天前
|
【AI系统】昇腾异构计算架构 CANN
本文介绍了昇腾 AI 异构计算架构 CANN,涵盖硬件层面的达·芬奇架构和软件层面的全栈支持,旨在提供高性能神经网络计算所需的硬件基础和软件环境。通过多层级架构,CANN 实现了高效的 AI 应用开发与性能优化,支持多种主流 AI 框架,并提供丰富的开发工具和接口,助力开发者快速构建和优化神经网络模型。
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
7天前
|
【AI系统】TVM 实践案例
本文探讨了如何利用AI编译器在新硬件上部署神经网络,重点介绍了TVM的工作流程,包括模型导入、转换为Relay、TE和TIR、自动调优、编译为机器码等步骤。文章还讨论了算法层面上的算子优化、量化技术,以及编译层面对量化模型的解析和计算图优化。此外,还介绍了TVM的BYOC框架,允许硬件加速器供应商通过即插即用的方式集成代码工具,实现高效编译和优化。最后,文章提及了算子和网络仿真的重要性,确保新硬件平台上的模型正确性和性能。
|
7天前
|
【AI系统】Auto-Tuning 原理
本文探讨了在多样化硬件平台上部署深度神经网络(DNN)时,传统算子库面临的挑战及解决方案。随着硬件平台的多样化和快速迭代,手动编写高性能算子库变得日益困难。文中介绍了基于TVM的三种自动调优系统——AutoTVM、Ansor和Meta Scheduler,它们通过自动生成高性能算子,有效解决了传统方法的局限性,提高了DNN在不同硬件平台上的执行效率。
|
7天前
|
【AI系统】指令和存储优化
在AI编译器底层,除了广泛应用的循环优化外,还存在指令优化和存储优化两大类。指令优化通过利用硬件提供的特殊加速指令,如向量化和张量化,提高计算效率;存储优化则关注如何高效管理数据存储与访问,减少延迟,提高整体计算效率。这些技术共同作用,极大提升了AI系统的性能。
|
7天前
|
【AI系统】算子循环优化
循环优化是提升计算性能的关键技术,主要通过改进数据局部性和增强计算并行性来实现。数据局部性优化利用缓存机制减少内存访问延迟,如循环分块、重排等;计算并行性优化则通过多核、向量化等技术最大化硬件效能,如循环展开、融合、拆分等。这些方法共同作用,显著提升程序执行效率。
|
7天前
|
【AI系统】AI 编译器后端优化
AI编译器采用多层架构,首先通过前端优化将不同框架的模型转化为统一的Graph IR并进行计算图级别的优化,如图算融合、内存优化等。接着,通过后端优化,将优化后的计算图转换为TensorIR,针对单个算子进行具体实现优化,包括循环优化、算子融合等,以适应不同的硬件架构,最终生成高效执行的机器代码。后端优化是提升算子性能的关键步骤,涉及复杂的优化策略和技术。
|
7天前
|
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
免费试用