【预测模型-RF预测】基于随机森林算法实现数据回归预测附matlab代码

简介: 【预测模型-RF预测】基于随机森林算法实现数据回归预测附matlab代码

1 内容介绍

1.1.1 基本单元—决策树

决策树是广泛用于分类和回归任务的模型,因其结构呈树形,故称决策树. 学习决策树,本质上讲就是学习一系列if/else问题,目标是通过尽可能少的if/else问题来得到正确答案,我们从这些一层层的if/else问题中进行学习并以最快的速度找到答案.

1.1.2 集成学习

集成学习是合并多个机器学习模型来构建更强大模型的方法. 目前,集成学习主要有两大流派bagging派系和boosting派系),其中boosting派系的代表算法主要有AdaBoost算法、梯度提升机GBDT和极限提升机(XGBoost,而本文中选择的随机森林是属于 bagging 派系的典型代表,其算法描述在表1中给出,从本质上讲就是许多决策树的集合,其中每棵树都和其他树略有不同.

对于分类问题,随机森林中的每棵树都是一个分类器,也就是说,每棵树做出一个分类结果,随机森林集成了所有树的分类投票结果且结果的投票是等权的,即对所有的投票取平均值,并将投票次数最多的结果作为输出.

2 仿真代码

%%  清空环境变量

warning off             % 关闭报警信息

close all               % 关闭开启的图窗

clear                   % 清空变量

clc                     % 清空命令行


%%  导入数据

res = xlsread('数据集.xlsx');


%%  划分训练集和测试集

temp = randperm(103);


P_train = res(temp(1: 80), 1: 7)';

T_train = res(temp(1: 80), 8)';

M = size(P_train, 2);


P_test = res(temp(81: end), 1: 7)';

T_test = res(temp(81: end), 8)';

N = size(P_test, 2);


%%  数据归一化

[p_train, ps_input] = mapminmax(P_train, 0, 1);

p_test = mapminmax('apply', P_test, ps_input);


[t_train, ps_output] = mapminmax(T_train, 0, 1);

t_test = mapminmax('apply', T_test, ps_output);


%%  转置以适应模型


3 运行结果

4 参考文献

[1]张涛. 基于随机森林和支持向量机在小麦种子分类中的比较研究[J]. 河西学院学报, 2020, 36(2):8.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。



相关文章
|
3月前
|
算法 安全 数据安全/隐私保护
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
|
4月前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
163 14
|
11月前
|
数据采集 机器学习/深度学习 数据可视化
【优秀python web系统毕设】基于python的全国招聘数据分析可视化系统,包括随机森林算法
本文介绍了一个基于Python的全国招聘数据分析可视化系统,该系统利用数据挖掘技术、随机森林算法和数据可视化技术,从招聘网站抓取数据,进行处理、分析和预测,帮助用户洞察招聘市场,为求职者和企业提供决策支持。
642 2
|
7月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
369 13
|
8月前
|
机器学习/深度学习 算法 Python
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。本文详细介绍了随机森林的工作原理、性能优势、影响因素及调优方法,并提供了Python实现示例。适用于分类、回归及特征选择等多种应用场景。
372 7
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
209 10
|
11月前
|
机器学习/深度学习 数据采集 算法
随机森林算法应用
8月更文挑战第20天
|
机器学习/深度学习 存储 人工智能
算法金 | 使用随机森林获取特征重要性
**随机森林算法简介**:集成多个决策树提升性能,常用于各类任务。在葡萄酒分类项目中,使用`RandomForestClassifier`实现模型,100棵树,得分100%。特征重要性显示了哪些化学成分影响最大。通过特征选择保持高准确性,证明了有效特征选择的重要性。7个关键特征中脯氨酸和酒精含量最重要。简洁高效,适用于特征工程。[链接指向知识星球]
107 5
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
241 6
|
11月前
|
机器学习/深度学习 数据采集 算法
基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
本文通过运用支持向量机(SVM)、决策树和随机森林算法,结合历史黄金价格数据和特征工程,建立了中国黄金价格的预测模型,并通过模型训练、评估及可视化分析,为黄金市场投资者和分析师提供了基于机器学习算法的预测方法和决策支持。
810 0

热门文章

最新文章