基于SIR模型的疫情发展趋势预测算法matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。

1.程序功能描述
基于SIR模型的疫情发展趋势预测算法.对病例增长进行SIR模型拟合分析,并采用模型参数拟合结果对疫情防控力度进行比较。整体思路为采用SIR微分方程模型,对疫情发展进行过程进行拟合。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
86c356f51227ff19d11749f9ed9b67a0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

```Opt=optimset; % 创建优化设置结构体
Opt.LargeScale ='off'; % 关闭大规模算法
Opt.TolFun = 1e-30; % 设置函数值收敛容忍度
Opt.Tolx = 1e-20; % 设置自变量收敛容忍度
Opt.TolCon = 1e-30; % 设置约束收敛容忍度

b0=[0.0000046,0.02,10000,10,0]'; % 初始化需要拟合的参数
%有约束极小优化参数
[btarget,y]=fmincon(@func_parameter,b0,[],[],[],[],bmin,bmax,[],Opt);

%%
% 使用优化后的参数计算预测数据
date=0:120;% 定义新的日期范围
% 原始日期数组
dateRaw=0:length(real_data)-1;
% 使用优化后的参数解ODE
[date,X]=ode45(@func_SIR,date,btarget(3:5),[],btarget(1:2));

S=X(:,1); % 提取易感者数量
I=X(:,2); % 提取感染者数量
R=X(:,3); % 提取移除者数量
35

```

4.本算法原理
疾病传播模型采用的是SIR模型,模型结构如下图所示。

94a29738f4f307d8acae8ad75ce82d45_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    总人群由易感人群(S)、感染者(I)、隔离者(R)三部分构成。在计算过程中,总人口数目(N)保持不变:感染者具有传染能力,其每日接触易感人群数为 λ。而相应的,每日医疗机构会隔离比例为 μ 的患者,被隔离之后,感染者不再接触易感人群,丧失传染疾病的能力。

    通过对上述微分方程组进行解析或数值求解,可以得到随时间变化的S(t), I(t), R(t) 函数,进而预测疫情发展趋势。通常情况下,需要根据实际情况确定参数β 和γ 的值,有时可以通过历史数据进行参数估计。

   SIR模型为分析传染病传播动态提供了基础框架,但也存在一些简化假设,例如忽略了年龄结构、免疫效果等因素。在实际应用中,SIR模型可以进行多种扩展,如加入潜伏期的SEIR模型(Susceptible-Exposed-Infectious-Recovered)、考虑出生和死亡的SIRD模型(Susceptible-Infected-Recovered-Dead)等。
相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
9天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
197 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)