MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化

简介: MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化

原文链接:https://tecdat.cn/?p=34230

分析师:Luoyan Zhang


集成电路板等电子产品生产中,控制回焊炉各部分保持工艺要求的温度对产品质量至关重要点击文末“阅读原文”了解更多


通过分析炉温曲线,可以检查和改善产品生产质量,提高产量和解决生产问题。高效温度曲线测试系统的必要组件包括:采集温度信息的热电偶传感器,采集数据的数据采集记录器,保护数据记录器的隔热箱以及最为重要的分析和保存所有温度数据的温度曲线测试软件。研究依据各焊接区域中心温度的炉温曲线来控制回焊炉各部分的温度以保证工艺要求。

任务/目标

通过对焊接区域的温度变化规律建立数学模型

问题进行简化,利用机理分析建立了热传导方程模型。设计最小二乘法拟合模型中,对问题进行数值模拟。最后基于最小二乘原理,在约束条件下建立炉温曲线的多目标优化模型。

数据源准备

利用MATLAB 程序解出待定的温度,时间,厚度参数系数,最终将新的温度和速度及厚度

 

建模


微分方程模型法:

数学微分法是指根据边际分析原理,运用数学上的微分方法,对具有曲线联系的极值问题进行求解,进而确定最优方案的一种决策方法。系统不能直接有关变量之间的直接关系一一函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统即建立微分方程模型。

 

最小二乘法模型:

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其它一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

线性规划:

线性规划是研究有限资源的最佳分配问题,即如何对有限的要求背景作出最佳方式的规划,以便最充分地发挥资源的效能去获取最佳的条件。在总体计划中,用线性规划模型解决问题的思路是,在背景需求条件约束下,求允许的最大的传送带过炉速度。当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。

 

模型 检验

使用有限分差法中的 空间反演法,把炉温曲线当做已知条件,结合给出的传送带运行速度来确定数学模型中拟合的预测值分布和真实值内容要点:结果分析、检验;模型检验及模型修正;结果表示如图该预测值与真实值的方差,标准差和极差的情况。

image.png

点击标题查阅往期内容


R语言解决最优化问题-线性规划(LP)问题


01

02

image.png

03

image.png

04

image.png



模型评价

优点

1.在数据处理方面,我们详细分析了数据,规范了数据的格式和可用性。

2.最小二乘法有最优解唯一、求解方便的特点,用最小化误差的平方和寻找数据的最佳函数匹配。

3.在图像处理和显示上,我们采MATLAB作图,合效据的变化趋势,使问题结果加清晰,条理和直观。

4.模型公式方面,尽量贴近数学建模思想——“用最简单的方法解决最难问题“的思想。

缺点

1.使用数值方法求解偏微分方程组,可能引入误差。

2.最小二乘法会将误差开平方,所以当某个预测值和真实值差别过大的时候,最小二乘法会愿意“牺牲”其他本来不错的数据点,使得整个拟合曲线受异常值扰动影响较

例如:

相应的炉温曲线如下:

image.png

给出各温区温度的设定值,求允许的最大传送带过炉速度。以约束条件为目标进行二维搜索:利用数值模拟优化问题,设定的温度时间的限定范围。使用MATLAB软件进行求解。

在各温区温度的设定值分别为182ºC(小温区1-5)、203ºC(小温区6)、237ºC(小温区7)、254ºC(小温区8-9),用MATLAB计算出允许的最大传送带过炉速度约为 Vmax=0.0133m/s。

 由于焊接区域的过高温度时间不宜过长,峰值温度不宜过高。提出炉温曲线中温度超过217℃至峰值温度的覆盖面积最小化。由焊接区域的厚度一定,综合覆盖面积最小化以及制程界限等约束条件。

联立不等关系式,由MATLAB进行数值分析可知,满足条件的传送带的过炉速度为0.0076m/s

各温区的设定温度如图:

image.png

相关文章
|
3天前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
7天前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
8天前
|
传感器 算法 数据安全/隐私保护
基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真
```markdown 探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。 ```
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ>0增强集成效果,提高预测准确性和系统稳健性。
|
19天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
21天前
|
传感器 监控 算法
基于虚拟力优化的无线传感器网络覆盖率matlab仿真
**摘要:** 本文探讨了基于虚拟力优化提升无线传感器网络(WSNs)覆盖率的方法。通过在MATLAB2022a中仿真,显示了优化前后网络覆盖率对比及收敛曲线。虚拟力优化算法模拟物理力,以优化传感器节点布局,防止重叠并吸引至目标区域,同时考虑墙壁碰撞。覆盖计算利用平面扫描法评估圆形和正方形传感器的覆盖范围。算法通过迭代优化网络性能,以提高WSNs的监控能力。
|
11天前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
|
11天前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
20天前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。

热门文章

最新文章