MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化

简介: MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化

原文链接:https://tecdat.cn/?p=34230

分析师:Luoyan Zhang


集成电路板等电子产品生产中,控制回焊炉各部分保持工艺要求的温度对产品质量至关重要点击文末“阅读原文”了解更多


通过分析炉温曲线,可以检查和改善产品生产质量,提高产量和解决生产问题。高效温度曲线测试系统的必要组件包括:采集温度信息的热电偶传感器,采集数据的数据采集记录器,保护数据记录器的隔热箱以及最为重要的分析和保存所有温度数据的温度曲线测试软件。研究依据各焊接区域中心温度的炉温曲线来控制回焊炉各部分的温度以保证工艺要求。

任务/目标

通过对焊接区域的温度变化规律建立数学模型

问题进行简化,利用机理分析建立了热传导方程模型。设计最小二乘法拟合模型中,对问题进行数值模拟。最后基于最小二乘原理,在约束条件下建立炉温曲线的多目标优化模型。

数据源准备

利用MATLAB 程序解出待定的温度,时间,厚度参数系数,最终将新的温度和速度及厚度

 

建模


微分方程模型法:

数学微分法是指根据边际分析原理,运用数学上的微分方法,对具有曲线联系的极值问题进行求解,进而确定最优方案的一种决策方法。系统不能直接有关变量之间的直接关系一一函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统即建立微分方程模型。

 

最小二乘法模型:

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其它一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

线性规划:

线性规划是研究有限资源的最佳分配问题,即如何对有限的要求背景作出最佳方式的规划,以便最充分地发挥资源的效能去获取最佳的条件。在总体计划中,用线性规划模型解决问题的思路是,在背景需求条件约束下,求允许的最大的传送带过炉速度。当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。

 

模型 检验

使用有限分差法中的 空间反演法,把炉温曲线当做已知条件,结合给出的传送带运行速度来确定数学模型中拟合的预测值分布和真实值内容要点:结果分析、检验;模型检验及模型修正;结果表示如图该预测值与真实值的方差,标准差和极差的情况。

image.png

点击标题查阅往期内容


R语言解决最优化问题-线性规划(LP)问题


01

02

image.png

03

image.png

04

image.png



模型评价

优点

1.在数据处理方面,我们详细分析了数据,规范了数据的格式和可用性。

2.最小二乘法有最优解唯一、求解方便的特点,用最小化误差的平方和寻找数据的最佳函数匹配。

3.在图像处理和显示上,我们采MATLAB作图,合效据的变化趋势,使问题结果加清晰,条理和直观。

4.模型公式方面,尽量贴近数学建模思想——“用最简单的方法解决最难问题“的思想。

缺点

1.使用数值方法求解偏微分方程组,可能引入误差。

2.最小二乘法会将误差开平方,所以当某个预测值和真实值差别过大的时候,最小二乘法会愿意“牺牲”其他本来不错的数据点,使得整个拟合曲线受异常值扰动影响较

例如:

相应的炉温曲线如下:

image.png

给出各温区温度的设定值,求允许的最大传送带过炉速度。以约束条件为目标进行二维搜索:利用数值模拟优化问题,设定的温度时间的限定范围。使用MATLAB软件进行求解。

在各温区温度的设定值分别为182ºC(小温区1-5)、203ºC(小温区6)、237ºC(小温区7)、254ºC(小温区8-9),用MATLAB计算出允许的最大传送带过炉速度约为 Vmax=0.0133m/s。

 由于焊接区域的过高温度时间不宜过长,峰值温度不宜过高。提出炉温曲线中温度超过217℃至峰值温度的覆盖面积最小化。由焊接区域的厚度一定,综合覆盖面积最小化以及制程界限等约束条件。

联立不等关系式,由MATLAB进行数值分析可知,满足条件的传送带的过炉速度为0.0076m/s

各温区的设定温度如图:

image.png

相关文章
|
4天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
113 80
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
1天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
10天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
16天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
25天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
106 15
|
22天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
26天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
22天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
26天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。

热门文章

最新文章