基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。

1.程序功能描述
假设一个收集轨道,上面有5个采集堆,这5个采集堆分别被看作一个420的矩阵(下面只有410),每个模块(比如:A31和A32的元素含量不同),为了达到采集物品数量和元素含量的要求(比如:需采集5吨和某元素单位质量在65与62之间),求出在每个4*20的矩阵中哪个模块被拿出可以达到要求并找出最优化的轨道?通过PSO优化算法找到最优的轨迹。

1.png

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg

   通过这个步骤将优化出符合采集规则且符合元素含量,并满足需求量的模块集合,然后进行轨迹优化。

3.核心程序

``` xnew = xnew1;
%插入交叉区域
for j=1:ncros
xnew1(i,n-ncros+j) = cros(j);
end
%判断产生需求量差是否变小
masses=0;
masses = sum(maxs_sets(xnew1(i,:)));
if F(i)>masses
x(i,:)=xnew1(i,:);
end
%进行变异操作
c1 = round(rand(n-1))+1;
c2 = round(rand
(n-1))+1;
temp = xnew1(i,c1);
xnew1(i,c1) = xnew1(i,c2);
xnew1(i,c2) = temp;
%判断产生需求量差是否变小
masses=0;
masses = sum(maxs_sets(xnew1(i,:)));

        if F(i)>masses
           x(i,:)=xnew1(i,:);
        end
    end

    Fitness_tmps1=F(1);
    Fitness_tmps2=1;
    for i=1:Num_x
        %如果当前值比之前值小,那么将粒子参数赋值给当前值
       if Fitness_tmps1>=F(i)
          Fitness_tmps1=F(i);
          Fitness_tmps2=i;
       end
    end
    xuhao      = Fitness_tmps2;
    L_best(N)  = min(F);
    %当前全局最优需求量
    Tour_gbest = x(xuhao,:);     
    N          = N + 1;

end
%判断含量是否满足要求
for ii = 1:5
    Fac_tmps(ii) = sum(FAC_sets(Tour_gbest,ii)'.*maxs_sets(Tour_gbest))/sum(maxs_sets(Tour_gbest));
end
%判断每组元素的含量是否满足约束要求
if (Fac_tmps(1) >= Mass1_min & Fac_tmps(1) <= Mass1_max) &...
   (Fac_tmps(2) >= Mass2_min & Fac_tmps(2) <= Mass2_max) &...
   (Fac_tmps(3) >= Mass3_min & Fac_tmps(3) <= Mass3_max) &...
   (Fac_tmps(4) >= Mass4_min & Fac_tmps(4) <= Mass4_max) &... 
   (Fac_tmps(5) >= Mass5_min & Fac_tmps(5) <= Mass5_max)
   flag(Num_pso-3) = 1;%如果都满足了,则产生标志信息1,否则产生标志信息0
else
   flag(Num_pso-3) = 0; 
end
Mass_fig(Num_pso-3)  = min(L_best);
Mass_Index{Num_pso-3}= Tour_gbest ;

end
figure;
plot(Mass_fig,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('采集模块个数');
ylabel('需求量计算值和标准需求量的差值关系图');
06_010m

```

4.本算法原理
三角形采集堆作为一种高效的数据采集结构,被广泛应用于环境监测、战场侦察、智能交通等领域。其核心任务是在指定的区域内进行数据采集,并将采集到的数据传送到处理中心。为了提高采集效率,减少能量消耗和行走路径长度,需要对三角形采集堆的轨道进行优化。

   传统的优化方法,如遗传算法、模拟退火算法等,虽然取得了一定的成果,但在处理复杂优化问题时仍存在收敛速度慢、易陷入局部最优解等问题。粒子群优化(PSO)算法是一种模拟鸟群觅食行为的群体智能优化算法,具有参数少、实现简单、收敛速度快等优点。因此,本文将PSO算法应用于三角形采集堆轨道优化问题中,以期获得更好的优化效果。

   粒子群优化算法是一种模拟鸟类集群或鱼群觅食行为的启发式全局优化算法。它通过迭代搜索多个候选解(称为“粒子”),每个粒子都有一个位置和速度,根据其自身的最优历史位置以及整个种群中发现的全局最优位置来更新自身状态,以期找到目标函数的全局最优解。

    在三角形采集堆轨道优化场景下,假设有一个移动机器人需要在一系列三角形区域进行资源采集,目标是规划出一条最优化的运动轨迹,使机器人在满足约束条件(如时间、能量消耗等)下尽可能覆盖所有区域或者最大化某种性能指标。

采集规则约束。

即每次只能采集最上面的,如果最上面的没有被取走,那么不能直接采集下面的。

这里,我们使用是数学公式表示如下:
4.png

   分别对四层的模块进行标记,最上面的为4,如果取走了则直接赋值0,这样,而每次我们只能去标号最大的那个。如果取走了,那么被取走的赋值为0,那么在判断的时候,可以取下面的,如果全部被取走了,则为全0,如果为全零,则这列就不能取值了。即全零表示空。

    即上面的约束条件是通过物品的采集,使得总量满足要求,且五个元素的单位质量满足上面的约束,最后使得采集轨迹最短。

   所以,通过上面的综合分析,我们所要的数学公式为:

5.png

   应用PSO解决此问题时,每个粒子表示一种可能的轨迹方案,目标函数可以设计为考虑了采集效率、路径长度、时间等因素的综合评价函数。通过不断地迭代,粒子群会逐渐收敛到最优或接近最优的轨道解决方案。
相关文章
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
48 31
|
3天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
12天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
16天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
22天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
18天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
15天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
下一篇
DataWorks