基于鱼群算法的散热片形状优化matlab仿真

简介: 本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。

1.课题概述
使用浴盆曲线进行空隙外形的模拟,然后通过优化,计算得到最优的浴盆曲线的各个参数,从而计算出最优的R值。浴盆曲线函数如下所示:

924400eae22458baf2b6fd395ef6cbd8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    从上面的仿真结果可知,直接对目标函数进行优化,仿真速度非常慢,这里我们使用浴缸曲线结合鱼群算法进行优化。从而得到最佳的孔隙度值和H对应的R值。对于浴缸函数,首先可以将部分参数设置为0,从而简化参数,这里,我们假设为0.

 函数可以简化为:

db603e23165bb641ffdb25310ac67d74_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

更详细原理可参考文献:

9badcf3651180ada82c8967a3c7b699e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.系统仿真结果

4.png
5.png
6.png
7.png
8.png
9.png

3.核心程序与模型
版本:MATLAB2022a
```X = func_init(Num_Fish,Value_Limit,Value_Limit2);
Value_Limit_Store = Value_Limit2(1:Ker,:);

gen = 1;
BestY = -1ones(1,Iteration); %最优的函数值
BestX = -1
ones(Ker,Iteration); %最优的自变量
besty = -9999; %最优函数值
[Y] = func_consistence(X);

while(gen<=Iteration)
gen

for J=1:Num_Fish
    J
    %聚群行为
    [Xi1,Yi1]=func_Fish_swarm (X,J,Dist_Visual,step,crowd,Num_search,Value_Limit_Store,Y); 
    %追尾行为
    [Xi2,Yi2]=func_Fish_Follow(X,J,Dist_Visual,step,crowd,Num_search,Value_Limit_Store,Y);

    if Yi1>Yi2
        X(:,J)=Xi1;
        Y(1,J)=Yi1;
    else
        X(:,J)=Xi2;
        Y(1,J)=Yi2;
    end
end

[Ymax,index]=max(Y);

if Ymax > besty
    besty          = Ymax;
    bestx          = X(:,index);
    BestY(gen)     = Ymax;
    [BestX(:,gen)] = X(:,index);
else
    BestY(gen)     = BestY(gen-1);
    [BestX(:,gen)] = BestX(:,gen-1);
end
gen = gen + 1;

end

figure
plot(1:Iteration,1./BestY,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('迭代次数');
ylabel('优化值');

disp(['最优解X:',num2str(bestx' ,'%1.5f ')]);
disp(['最优解Y:',num2str(1/besty,'%1.5f ')]);
save test.mat Iteration bestx besty BestY

alpha = 0;
beta = bestx(2);
gama = bestx(4);
siga = bestx(3);
delt = 0;
ling = bestx(1);
t = -2.5:0.02:2.5;
for i = 1:length(t)
if abs(i-alpha) >= beta
b(i) = -(abs(t(i) - alpha)-beta)^siga/gama;
else
b(i) = 0;
end
lemda(i) = delt + ling*(1-exp(b(i)));
end
figure;
plot(t,lemda,'b-o','LineWidth',1);
title('优化后的散热片内部空隙结构——利用bathtub构造');
grid on
02_014m
toc

```

4.系统原理简介
鱼群算法(Fish Swarm Algorithm,FSA)是一种模拟自然界中鱼群行为的优化算法,具有全局搜索能力强、收敛速度快等优点。基于鱼群算法的散热片形状优化,是通过引入鱼群算法来寻找散热片最佳形状的一种方法。

4.1鱼群算法原理
鱼群算法通过模拟鱼群中个体的行为来实现寻优。在自然界中,鱼群往往呈现出一种自组织、自适应的行为特征,如聚群、避障、觅食等。鱼群算法将这些行为抽象为数学模型,通过迭代计算来寻找最优解。在鱼群算法中,每个个体(鱼)的行为受以下三个规则影响:

(1)聚群规则:个体趋向于向邻近个体聚集,以保持群体凝聚力。数学上,这可以通过计算个体与邻近个体的平均距离来实现。

(2)避障规则:个体在游动过程中会避开障碍物,以保证生存空间。数学上,这可以通过计算个体与障碍物之间的距离来实现。

(3) 觅食规则:个体趋向于向食物丰富的区域游动,以获取更多食物。数学上,这可以通过计算个体的适应度值来实现。

4.2鱼群算法的流程
(1)初始化:设定鱼群规模、迭代次数等参数,随机生成初始鱼群。

(2)计算适应度值:根据散热片形状优化的目标函数,计算每个个体的适应度值。

(3)更新位置:根据聚群规则、避障规则和觅食规则,更新每个个体的位置。

(4)判断终止条件:判断是否达到最大迭代次数或满足其他终止条件。若满足,则输出最优解;否则,返回步骤(2)。

4.3 散热片形状优化数学模型
浴盆曲线函数如下所示:

9c8ed9a9f06b703133a0d52178736c15_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

上述结果在优化过程中,可以表示为:

a617a27f74964891c06f90e252839474_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   其余参数只改变浴缸曲线的位置,所以,这里我们只要对上面红色的三个参数和外部的H进行最优搜索即可。其对应的结果为:

5d81353a762f24ec850d0b97345b8bca_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

确定优化变量:选择散热片的形状参数作为优化变量。
建立目标函数:根据散热片性能评价指标,建立目标函数。
确定约束条件:根据散热片设计要求,确定约束条件。
初始化鱼群:设定鱼群规模和迭代次数,随机生成初始鱼群。
计算适应度值:根据目标函数和约束条件,计算每个个体的适应度值。
更新位置:根据聚群规则、避障规则和觅食规则,更新每个个体的位置。在更新过程中,需要考虑散热片的形状约束和制造工艺约束。可通过引入罚函数法或可行方向法来处理约束条件。
判断终止条件:判断是否达到最大迭代次数或满足其他终止条件。若满足,则输出最优解;否则,返回步骤(5)。

相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
9天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。