基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真

简介: 本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。

1.课题概述
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,对比UKF,EKF迭代UKF,迭代EKF四种卡尔曼滤波的控制效果。

2.系统仿真结果

1.png
2.png
3.png
4.png

3.核心程序与模型
版本:MATLAB2022a

X_iukf        = zeros(2, Times1);
X_iukf(:,1)   = state0;
P_iukf        = zeros(2,2,Times1);
P_iukf(:,:,1) = Sigma_;
for i=1:Times1-1
    [X_iukf(:,i+1), P_iukf(:,:,i+1)] = func_iter_EKF(X_iukf(:,i), P_iukf(:,:,i), f, [z_(i,:)]', Q, R, dt);
end
err_ekf  =X_ekf  - theta00(1:dt/dt0:end,:)';
err_iekf = X_iekf - theta00(1:dt/dt0:end,:)';
err_ukf  =X_ukf  - theta00(1:dt/dt0:end,:)';
err_iukf = X_iukf - theta00(1:dt/dt0:end,:)';

figure
subplot(2,2,1)
plot(mod(err_ekf(1,:)-pi, 2*pi).^2)
title('EKF控制误差')
ylabel('theta');
subplot(2,2,2)
plot(mod(err_iekf(1,:)-pi,2*pi).^2)
title('迭代EKF控制误差')
ylabel('theta');
subplot(2,2,3)
plot(mod(err_ukf(1,:)-pi,2*pi).^2)
title('UKF控制误差')
ylabel('theta');
subplot(2,2,4)
plot(mod(err_iukf(1,:)-pi,2*pi).^2)
title('迭代UKF控制误差')
ylabel('theta');

figure
subplot(2,2,1)
plot(err_ekf(2,:))
title('EKF控制误差')
ylabel('theta dot');
subplot(2,2,2)
plot(err_iekf(2,:))
title('迭代EKF控制误差')
ylabel('theta dot');
subplot(2,2,3)
plot(err_ukf(2,:))
title('UKF控制误差')
ylabel('theta dot');
subplot(2,2,4)
plot(err_iukf(2,:))
title('迭代UKF控制误差')
ylabel('theta dot');


P_ekf2  = reshape(P_ekf, [4, Times1]);
P_iekf2 = reshape(P_iekf, [4, Times1]);
P_ukf2  = reshape(P_ukf, [4, Times1]);
P_iukf2 = reshape(P_iukf, [4, Times1]);

figure;
plot(P_ekf2(1,:))
hold on
plot(P_iekf2(1,:))
hold on
plot(P_ukf2(1,:))
hold on
plot(P_iukf2(1,:))
legend('EKF','迭代iEKF','UKF','迭代UKF')
0007
AI 代码解读

4.系统原理简介
倒立摆控制系统是一种具有挑战性的非线性控制系统,常用于研究控制算法的性能。扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)是两种常用的非线性滤波方法,用于估计系统的状态。本文将详细介绍基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF迭代UKF和迭代EKF的性能。

4.1、UKF(无迹卡尔曼滤波)
UKF是一种基于无迹变换(Unscented Transform,UT)的非线性滤波方法。它通过选择一组确定的sigma点来逼近非线性函数的概率密度函数,从而避免了EKF中对非线性函数进行泰勒级数展开带来的截断误差。

476c5a2e34383ab9bf9f22decb5cc692_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1d5dcfc72f5615d3d16bb79230f24de1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.2 EKF(扩展卡尔曼滤波)
EKF是一种基于泰勒级数展开的非线性滤波方法。它通过在当前估计值附近对非线性函数进行泰勒级数展开,并保留一阶项来近似非线性函数。然后利用卡尔曼滤波的框架进行状态估计。

a6b0993de4a2e33b35fda5eeca53de02_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.3iEKF(迭代扩展卡尔曼滤波)
iEKF是一种基于迭代思想的扩展卡尔曼滤波方法。它通过多次迭代来改进状态估计的精度。在每次迭代中,利用上一次迭代的估计值对非线性函数进行泰勒级数展开,并更新状态估计,IEKF 的核心思想就是想 提高观测方程的线性化精度,因为我们之前的 EKF 都是把观测方程在IMU得到的 先验状处进行线性化,此时线性化是观测方程为:

d82207b031cbb0272e792c61055b79c8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.4 iUKF(迭代无迹卡尔曼滤波)
iUKF结合了无迹卡尔曼滤波和迭代思想,通过多次迭代来改进状态估计的精度。在每次迭代中,利用上一次迭代的估计值重新计算sigma点,并通过无迹变换传播sigma点来更新状态估计。

4.5优缺点比较
UKF和iUKF相较于EKF和iEKF,由于采用了无迹变换,对于非线性函数的逼近更为准确,因此在非线性较强的系统中表现更好。然而,UKF和iUKF的计算复杂度相对较高,对于维数较高的系统可能会面临计算上的挑战。

   另一方面,EKF和iEKF在线性化过程中只保留了一阶项,因此在非线性较强时可能会导致较大的估计误差。但是,它们的计算复杂度相对较低,对于维数较高的系统更为实用。此外,通过迭代的方式,iEKF和iUKF可以进一步提高状态估计的精度。

    总结来说,选择UKF、EKF、iUKF还是iEKF取决于具体的系统特性和需求。在非线性较强且维数较低的系统中,UKF和iUKF可能是更好的选择;而在维数较高或对计算复杂度有限制的场景中,EKF和iEKF可能更为实用。
AI 代码解读
目录
打赏
0
2
2
0
184
分享
相关文章
基于线性核函数的SVM数据分类算法matlab仿真
本程序基于线性核函数的SVM算法实现数据分类,使用MATLAB2022A版本运行。程序生成随机二维数据并分为两组,通过自定义SVM模型(不依赖MATLAB工具箱)进行训练,展示不同惩罚参数C下的分类结果及决策边界。SVM通过寻找最优超平面最大化类别间隔,实现高效分类。 核心代码包括数据生成、模型训练和结果可视化,最终绘制了两类数据点及对应的决策边界。此实现有助于理解SVM的工作原理及其在实际应用中的表现。
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
33 15
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等