同一路RTSP|RTMP流如何同时回调YUV和RGB数据实现渲染和算法分析

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 我们播放RTSP|RTMP流,如果需要同时做渲染和算法分析的话,特别是渲染在上层实现(比如Unity),算法是python这种情况,拉两路流,更耗费带宽和性能,拉一路流,同时回调YUV和RGB数据也可以,但是更灵活的是本文提到的按需转算法期望的RGB数据,然后做算法处理

技术背景

我们在做RTSP|RTMP播放器的时候,有这样的技术诉求,开发者希望同时回调YUV、RGB数据,特别是Unity场景下,YUV数据用于渲染,RGB数据用于做视觉算法分析,拿到的RGB数据,想办法和python通信,发给python做视觉算法处理。

一般来说,如果设备带宽和性能比较好的话,可以直接拉两路流,同时解码回调需要的数据,当然,一般是不建议这么做,特别是4K+分辨率的流,同时解两路,耗费性能,没有必要。

另外一种,可以修改播放器底层逻辑,实现同时回调YUV和RGB数据,但是,我们知道,大多场景,RGB数据做算法分析的话,不一定需要全帧和高分辨率,考虑到算法处理能力,比如,有可能一秒钟只需要处理5-10帧,而且,有的视觉算法对高分辨率数据支持不好(比如分析4K的)。

那么,比较好的方式是,回调YUV数据,然后,RGB数据,提供上层接口,按需转,转过后的RGB数据,发给python或者其他算法就好。

技术实现

基于上述场景,我们做了以下的方案:

image.gif

1. 设置回调YUV数据:

video_frame_call_back_ = new SP_SDKVideoFrameCallBack(SetVideoFrameCallBackV2);
NTSmartPlayerSDK.NT_SP_SetVideoFrameCallBack(player_handle_, (Int32)NT.NTSmartPlayerDefine.NT_SP_E_VIDEO_FRAME_FORMAT.NT_SP_E_VIDEO_FRAME_FROMAT_I420, IntPtr.Zero, video_frame_call_back_);

image.gif

2. 如果是做YUV到RGB数据转换:

/*
 * SmartPlayer.cs
 * Author: https://daniusdk.com
 * WeChat: xinsheng120
 */
rgb_frame.format_ = (int)NT.NTSmartPlayerDefine.NT_SP_E_VIDEO_FRAME_FORMAT.NT_SP_E_VIDEO_FRAME_FORMAT_ARGB;
rgb_frame.width_ = video_frame.width_;
rgb_frame.height_ = video_frame.height_;
rgb_frame.timestamp_ = video_frame.timestamp_;
rgb_frame.stride0_ = video_frame.width_ * 4;
rgb_frame.stride1_ = 0;
rgb_frame.stride2_ = 0;
rgb_frame.stride3_ = 0;
Int32 argb_size = rgb_frame.stride0_ * rgb_frame.height_;
rgb_frame.plane0_ = Marshal.AllocHGlobal(argb_size);
NTSmartPlayerSDK.NT_SP_I420ToARGB(video_frame.plane0_, video_frame.stride0_, video_frame.plane1_, video_frame.stride1_, video_frame.plane2_, video_frame.stride2_,
   rgb_frame.plane0_, rgb_frame.stride0_, video_frame.width_, video_frame.height_);

image.gif

3. 这里可以看到,我们设计了I420到ARGB的接口:

/*
 * smart_player_sdk.cs
 * Author: https://daniusdk.com
 * WeChat: xinsheng120
 */
[DllImport(@"SmartPlayerSDK.dll")]
public static extern UInt32 NT_SP_I420ToARGB(IntPtr src_y_plane, Int32 src_y_stride,
    IntPtr src_u_plane, Int32 src_u_stride,
    IntPtr src_v_plane, Int32 src_v_stride,
    IntPtr dst_argb_plane, Int32 dst_argb_stride,
    Int32 width, Int32 height);

image.gif

好多算法,对高分辨率数据支持并不友好,于是我们做了分辨率缩放接口,拿到yuv数据后,先做缩放,然后再做yuv到rgb的转换。

/*
 * SmartPlayer.cs
 * Author: https://daniusdk.com
 * WeChat: xinsheng120
 */
 
int scale_width = 1280;
int scale_height = 720;
int scale_y_stride = scale_width;
int scale_u_stride = (scale_width + 1) / 2;
int scale_v_stride = scale_u_stride;
int scale_y_size = scale_y_stride * scale_height;
int scale_u_size = scale_u_stride * ((scale_height + 1) / 2);
int scale_v_size = scale_u_size;
NT_SP_VideoFrame scale_frame = new NT_SP_VideoFrame();
scale_frame.width_ = scale_width;
scale_frame.height_ = scale_height;
scale_frame.plane0_ = Marshal.AllocHGlobal(scale_y_size);
scale_frame.plane1_ = Marshal.AllocHGlobal(scale_u_size);
scale_frame.plane2_ = Marshal.AllocHGlobal(scale_v_size);
NTSmartPlayerSDK.NT_SP_I420Scale(video_frame.plane0_, video_frame.stride0_,
    video_frame.plane1_, video_frame.stride1_,
    video_frame.plane2_, video_frame.stride2_,
    video_frame.width_, video_frame.height_,
    scale_frame.plane0_, scale_y_stride,
    scale_frame.plane1_, scale_u_stride,
    scale_frame.plane2_, scale_v_stride,
    scale_frame.width_, scale_frame.height_, 3);
rgb_frame.format_ = (int)NT.NTSmartPlayerDefine.NT_SP_E_VIDEO_FRAME_FORMAT.NT_SP_E_VIDEO_FRAME_FORMAT_ARGB;
rgb_frame.width_ = scale_frame.width_;
rgb_frame.height_ = scale_frame.height_;
rgb_frame.stride0_ = scale_frame.width_ * 4;
rgb_frame.stride1_ = 0;
rgb_frame.stride2_ = 0;
rgb_frame.stride3_ = 0;
Int32 argb_size = rgb_frame.stride0_ * rgb_frame.height_;
rgb_frame.plane0_ = Marshal.AllocHGlobal(argb_size);
NTSmartPlayerSDK.NT_SP_I420ToARGB(scale_frame.plane0_, scale_y_stride, scale_frame.plane1_, scale_u_stride, scale_frame.plane2_, scale_v_stride,
    rgb_frame.plane0_, rgb_frame.stride0_, scale_frame.width_, scale_frame.height_);

image.gif

有了rgb数据,下一步,就是如何跟python通信的问题,在此之前,我们有专门写过一篇blog,跟python交互,有多种方式,比如共享内存、通过UDP发送或者写bitmap文件,然后python实时读取就好。以写bitmap为例(Linux demo),开始播放后,video frame数据回调处理如下:

extern "C" void NT_SDK_SDKVideoFrameCallBack(NT_HANDLE handle, NT_PVOID user_data, NT_UINT32 status,
    const NT_SP_VideoFrame* frame)
{
    if (!frame)
        return;
    fprintf(stdout, "OnSDKVideoFrameCallBack handle:%p frame:%p, timestamp:%llu\n", handle, frame, frame->timestamp_);
#if NEED_SAVE_BITMAP
    if (NT_SP_E_VIDEO_FRAME_FORMAT_RGB32 == frame->format_
        || NT_SP_E_VIDEO_FRAME_FORMAT_ARGB == frame->format_) {
        struct timeval tv;
        if (gettimeofday(&tv, nullptr) != 0) {
            fprintf(stderr, "save bitmap file call gettimeofday failed");
            return;
        }
        uint64_t local_time_us = tv.tv_sec*UINT64_C(1000000) + tv.tv_usec;
        char file_name[128] = { 0 };
        sprintf(file_name, "./outbitmaps/%llu.bmp", (unsigned long long)local_time_us);
        if (!save_bitmap_file(frame->width_, frame->height_, frame->plane0_, frame->stride0_, frame->stride0_*frame->height_, file_name))
            fprintf(stderr, "save bitmap file failed, name:%s", file_name);
        else
            g_bitmap_file_names_.emplace_back(file_name);
        while (g_bitmap_file_names_.size() > 32) {
            remove(g_bitmap_file_names_.front().c_str());
            g_bitmap_file_names_.pop_front();
        }
    }
#endif // NEED_SAVE_BITMAP
}

image.gif

video frame回调后的数据,直接调用save_bitmap_file()实现bitmap文件写入,python程序,只需要到指定的文件夹下,读取生成的bitmap,然后做算法分析即可。拿到rgb数据,当然也可以通过共享内存或UDP直接发出去。

总结

我们播放RTSP|RTMP流,如果需要同时做渲染和算法分析的话,特别是渲染在上层实现(比如Unity),算法是python这种情况,拉两路流,更耗费带宽和性能,拉一路流,同时回调YUV和RGB数据也可以,但是更灵活的是本文提到的按需转算法期望的RGB数据,然后做算法处理。以上是大概的逻辑实现,感兴趣的开发者,可以单独跟我交流。

相关文章
|
11天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
19天前
|
算法
算法设计与分析作业
这篇文章是关于算法设计与分析的作业,其中包含了两个算法实现:一个是使用分治算法实现的十进制大整数相乘(包括加法、减法和乘法函数),并进行了正确性和健壮性测试;另一个是使用快速排序思想实现的分治查找第K小元素的程序,并分析了其平均和最坏时间复杂度。
算法设计与分析作业
|
5天前
|
存储 算法 测试技术
预见未来?Python线性回归算法:数据中的秘密预言家
【9月更文挑战第11天】在数据的海洋中,线性回归算法犹如智慧的预言家,助我们揭示未知。本案例通过收集房屋面积、距市中心距离等数据,利用Python的pandas和scikit-learn库构建房价预测模型。经过训练与测试,模型展现出较好的预测能力,均方根误差(RMSE)低,帮助房地产投资者做出更明智决策。尽管现实关系复杂多变,线性回归仍提供了有效工具,引领我们在数据世界中自信前行。
18 5
|
19天前
|
人工智能 算法
第一周算法设计与分析 G : 排队援救
这篇文章介绍了解决算法问题"排队援救"的方法,通过使用队列和映射来模拟救援点的排队过程,并确定最终得到救援的人的顺序和编号。
|
19天前
|
算法 C++
第一周算法设计与分析 H : 括号匹配
这篇文章介绍了解决算法问题"括号匹配"的方法,通过使用栈来检查给定字符串中的括号是否合法匹配,并提供了相应的C++代码实现。
|
19天前
|
算法 C++
第一周算法设计与分析 F : 模拟计算器
该文章 "第一周算法设计与分析 F : 模拟计算器" 的摘要或讨论。这篇文章介绍了如何设计一个程序来模拟一个基本的计算器,处理包含加、减、乘运算的表达式,并给出了相应的C++代码实现
|
11天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
12天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
13天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。