基于DCT变换的彩色图像双重水印嵌入和提取算法matlab仿真

简介: **算法摘要:**- 图形展示:展示灰度与彩色图像水印应用,主辅水印嵌入。- 软件环境:MATLAB 2022a。- 算法原理:双重水印,转换至YCbCr/YIQ,仅影响亮度;图像分割为M×N块,DCT变换后嵌入水印。- 流程概览:两步水印嵌入,每步对应不同图示表示。- 核心代码未提供。

1.算法运行效果图预览
灰度图
image.png

彩色图

image.png

2.算法运行软件版本
matlab2022a

3.算法理论概述
双重水印嵌入算法涉及两个独立的水印:主水印和辅水印,它们可以是灰度图像、二进制序列或其他形式的数据。以下简述嵌入过程:

图像预处理:将彩色图像从RGB空间转换至YCbCr或YIQ等色彩空间,仅对亮度分量(如Y分量)进行水印嵌入,以减少对颜色信息的影响。

图像分割:将亮度分量图像分割成若干个非重叠的M×N大小的子块。

DCT变换:对每个子块进行二维DCT变换,得到DCT系数矩阵。

具体的算法流程图如下所示:

第一重水印:
image.png

第二重水印:

image.png

4.部分核心程序

%基于论文的双重水印算法嵌入
%第1重
%设置嵌入强度
Power      = 20;  
%设置块的大小
Blksize    = 8;   
%改变水印大小,如果太大,则没法全部插入
RR         = 32;
CC         = 32;

%第1重 
mwk_image1r = func_wk_insert_first(I0r,Marks1r,Power,Blksize,RR,CC);
mwk_image1g = func_wk_insert_first(I0g,Marks1g,Power,Blksize,RR,CC);
mwk_image1b = func_wk_insert_first(I0b,Marks1b,Power,Blksize,RR,CC);

%第2重
mwk_image2r = func_wk_insert_second(mwk_image1r,Marks2r,Power,Blksize,RR,CC);
mwk_image2g = func_wk_insert_second(mwk_image1g,Marks2g,Power,Blksize,RR,CC);
mwk_image2b = func_wk_insert_second(mwk_image1b,Marks2b,Power,Blksize,RR,CC);


%%---------------------------------------------------------------------------------------
%增加攻击
noise0       = 1*randn(size(mwk_image1r));
mwk_image2r  = double(mwk_image2r) + noise0;
mwk_image2g  = double(mwk_image2g) + noise0;
mwk_image2b  = double(mwk_image2b) + noise0;
mwk_image(:,:,1)  = mwk_image2r;
mwk_image(:,:,2)  = mwk_image2g;
mwk_image(:,:,3)  = mwk_image2b; 

Msg1r        = func_wk_desert_first(mwk_image2r,Blksize,RR,CC,0.8);
Msg1g        = func_wk_desert_first(mwk_image2g,Blksize,RR,CC,0.8);
Msg1b        = func_wk_desert_first(mwk_image2b,Blksize,RR,CC,0.8);
Msg1(:,:,1)  = Msg1r;
Msg1(:,:,2)  = Msg1g;
Msg1(:,:,3)  = Msg1b;


Msg2r        = func_wk_desert_second(mwk_image2r,Blksize,RR,CC,2.2);
Msg2g        = func_wk_desert_second(mwk_image2g,Blksize,RR,CC,2.2);
Msg2b        = func_wk_desert_second(mwk_image2b,Blksize,RR,CC,2.2);
Msg2(:,:,1)  = Msg2r;
Msg2(:,:,2)  = Msg2g;
Msg2(:,:,3)  = Msg2b;


figure(1)
subplot(231);
imshow(I0,[]);
title('原始图像');
subplot(232);
imshow(I1,[]);
title('第一重水印');
subplot(233);
imshow(I2,[]);
title('第二重水印');

subplot(234);
imshow(uint8(mwk_image));
title('加入旋转攻击和噪声攻击的图像');
subplot(235);
imshow(uint8(Msg1));
title('第一重水印提取');
subplot(236);
imshow(uint8(Msg2));
title('第二重水印提取');
相关文章
|
18天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
18天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
18天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
18天前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
52 0
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真
本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。 理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。
|
18天前
|
算法 5G 定位技术
高低频混合组网系统中基于地理位置信息的信道测量算法matlab仿真
本内容展示了一种基于地理位置信息的信道测量算法,适用于现代蜂窝系统,尤其在毫米波通信中,波束对准成为关键步骤。算法通过信号传播模型和地理信息实现信道状态测量,并优化误差提升准确性。完整程序基于Matlab2022a运行,无水印效果,核心代码配有中文注释及操作视频,适合深入学习与应用开发。
|
18天前
|
算法 数据安全/隐私保护
基于SA模拟退火算法的多车辆TSP问题求解matlab仿真
本程序基于模拟退火(SA)算法求解多车辆旅行商问题(VRPMTS),使用MATLAB2022A实现。程序为三辆车规划最短路径,输出路线规划图与SA收敛曲线。核心代码通过迭代调整温度参数和接受概率,避免陷入局部最优,逐步逼近全局最优解。算法原理包括初始高温允许劣质解、逐步降温探索解空间,并结合邻居解生成方法优化路径。适用于物流配送、路径规划等领域,具有较高实用价值。
|
10月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
424 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
10月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
246 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
10月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
409 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章