基于Hadoop部署实践对网站日志分析(大数据分析案例)(三)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 基于Hadoop部署实践对网站日志分析(大数据分析案例)



3.6 使用Sqoop将hive分析结果表导入mysql

3.6.1 创建mysql表

mysql -u root -p(启动MySQL,需要输入密码,不显示)


create database whw;(创建数据库)


创建一个表格


create table whw_logs_stat(logdate varchar(10) primary key,pv int,reguser int,ip int,jumper int);


image.png


3.6.2 将hive结果文件导入mysql

查看hive存放的表位置


show create table whw_2013_05_30;


image.png


使用sqoop将我们的hive里面的结果表导入到我们的MySQL里面,使用sqoop export –connect jdbc:mysql://localhost:3306/数据库 –username root -p –table MySQL里面的表名 –export-dir hive里面结果表的存储位置 -m 1 –input -fields-terminated -by ‘\001’


新建终端执行:


sqoop export --connect jdbc:mysql://localhost:3306/whw --username root -P --table whw_logs_stat --export-dir  /opt/hadoop/hive/warehouse/data.db/whw_2013_05_30  -m 1 --input-fields-terminated-by '\001'


image.png


sqoop export --connect jdbc:mysql://localhost:3306/whw --username root -P --table whw_logs_stat --export-dir  /opt/hadoop/hive/warehouse/data.db/whw_2013_05_31  -m 1 --input-fields-terminated-by '\001'


image.png


查看MySQL是否导入成功


select * from whw_logs_stat;


image.png


成功导入!


image.png



附加操作—增添色彩

本地Navicat连接

(我们用虚拟机里面的IP来连接我们的本地Navicat,这样有助于我们数据分析可视化!)


image.png


数据可视化(项目色彩一);

数据可视化可以直观的把我们的数据展现出来,作为领导者决策的重要参考意见


我采用pycharm的pymysql对虚拟机里面的MySQL进行远程连接,通过编程对数据可视化一键展示,不需要我们手动的添加数据,直接可以保存变量数据


image.png


简单的数据分析:很明显我们可以通过可视化的效果得知,2013-05-31的浏览量、注册用户、独立IP数这些正向指标都比较的好,都是高于2013-05-30的效果,所以我们可以在这一天对网站加大维护和投入相应的广告来盈利。


from pyecharts.globals import ThemeType
from pyecharts import options as opts
from pyecharts.charts import Bar
import pymysql
conn = pymysql.connect(
                host='192.168.190.135',
                user='root',
                password='2211',
                database='whw',
                port=3306,
                charset='utf8'
)
cur = conn.cursor()
sql = 'select logdate as `日期`,pv as `浏览量`,reguser as `注册用户数`,ip as `独立IP数量`,jumper as `跳出用户数` from `whw_logs_stat`;'
cur.execute(sql)
data = cur.fetchall()
print(data)
x_1=list(data[0][1:])
x_2=list(data[1][1:])
print(x_1)
print(x_2)
a=[]
for x in data:
    a.append(x[0])
a_1=a[0]
a_2=a[1]
print(a_1)
print(a_2)
conn.close()
data_0=['浏览量', '注册用户', '独立IP数', '跳出用户数']
c = (
    Bar({"theme": ThemeType.MACARONS})
    .add_xaxis(data_0)
    .add_yaxis(a_1, x_1)    #gap="0%"   这个可设置柱状图之间的距离
    .add_yaxis(a_2, x_2)    #gap="0%"   这个可设置柱状图之间的距离
    .set_global_opts(title_opts={"text": "某网站日志数据分析", "subtext": "柱状图"},     #该标题的颜色跟随主题
                     # 该标题默认为黑体显示,一般作为显示常态
                     # title_opts=opts.TitleOpts(title="标题")
                     xaxis_opts=opts.AxisOpts(
                         name='类别',
                         name_location='middle',
                         name_gap=30,  # 标签与轴线之间的距离,默认为20,最好不要设置20
                         name_textstyle_opts=opts.TextStyleOpts(
                             font_family='Times New Roman',
                             font_size=16  # 标签字体大小
                         )),
                     yaxis_opts=opts.AxisOpts(
                         name='数量',
                         name_location='middle',
                         name_gap=60,
                         name_textstyle_opts=opts.TextStyleOpts(
                             font_family='Times New Roman',
                             font_size=16
                             # font_weight='bolder',
                         )),
                    # datazoom_opts=opts.DataZoomOpts(type_="inside"),  #鼠标可以滑动控制
                     # toolbox_opts=opts.ToolboxOpts()  # 工具选项
                    # brush_opts=opts.BrushOpts()       #可以保存选择
    )
    .render("简单柱状图.html")
)
print("图表已生成!请查收!")


将数据导入到hbase(项目色彩二)

创建数据表和列族:create 'whw','data'

插入数据:


Put 'whw','1','data:londate,pv,reguser,jumper','2013-05-30,69857,28,10411,3749'

put 'whw','2','data:londate,pv,reguser,jumper','2013-05-31,502404,523,24635,8454'

参数说明:添加数据:put ‘表名称’,’行键’,’列族:列名1,列名2……’,‘数据1,数据2……’在这里我们就可以理解为是一个二维表,也就是Excel类似的,一行一列确定一个单元格


image.png


扫描整个列族:scan ‘表名称’, {COLUMN=>‘列族’}


Scan ‘whw’,{ COLUMN =>’data’}


image.png

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
8天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
35 2
|
11天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
56 14
|
13天前
|
存储 SQL 监控
|
13天前
|
运维 监控 安全
|
16天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
52 2
|
16天前
|
监控 关系型数据库 数据库
怎样分析慢查询日志?
【10月更文挑战第29天】怎样分析慢查询日志?
32 2
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
149 6
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
65 2
|
18天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
63 2
|
19天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
57 1