大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(新开的坑!正在更新!)

章节内容

上节我们完成了如下的内容:


Kafka集群监控方案

JConsole

Kafka Eagle

JavaAPI获取集群指标

简单介绍

在技术的不断迭代中,一路发展,三代技术引擎:

  • MapReduce 昨天
  • Spark 今天
  • Flink 未来

MapReduceSpark都是类MR的处理引擎,底层原理非常相似。

什么是Spark

Spark的发展历程如下图: Spark特点

速度快,与MapReduce相比,Spark基于内存运算要快100倍以上,基于硬盘运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效的处理流数据

使用简单,Spark支持Scala、Java、Python、R的API,还支持超过80种算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的Shell,可以非常方便的在这些Shell中使用Spark集群来验证解决问题的方法

通用性好,Spark提供了统一的解决方案,Spark可以用于批处理、交互式查询(SparkSQL)、实时流处理(SparkStreaming)、机器学习(SparkMLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝衔接。Spark统一解决方案非常具有吸引力,企业想用统一的平台去处理遇到的问题,减少开发和维护人力的成本和部署平台的物力成本。

兼容性好,Spark可以非常方便的和其他开源的产品进行融合,Spark可以使用YARN、Mesos作为它的资源管理和调度器。可以处理所有Hadoop支持的数据,包括HDFS、HBase、Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要任何的数据迁移就可以使用Spark。Spark也可以不依赖于其它第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人可以非常容器的部署和使用Spark。

Spark与Hadoop

狭义上

从狭义上看:Hadoop是一个分布式框架,由存储、资源调度、计算三部分组成

Spark是一个分布式计算引擎,是由Scala编写的计算框架,基于内存的快速、通用、可扩展的大数据分析引擎。


广义上

从广义上看:Spark是Hadoop生态中不可或缺的一部分。


MapReduce不足

表达能力有限

磁盘IO开销大

延迟高:任务之间有IO开销,在前一个任务完成之前,另一个任务无法开始。

相对于Spark,Spark的设计要更高效,Spark在借鉴MapReduce优点的同时,很好的解决了MapReduce所面临的问题:

两者对比

Spark的计算模式也属于MapReduce,是对MR框架的优化。


数据存储结构:MapReduce是磁盘HDFS,Spark是内存构建的弹性分布式数据集RDD

编程范式:Map+Reduce表达力欠缺,Spark提供了丰富操作使数据处理代码很短

运行速度:MapReduce计算中间结果存磁盘,Spark中间结果在内存中

任务速度:MapReduce任务以进程,需要数秒启动,Spark是小数据集读取在亚秒级

实际应用

批量处理(离线处理):通常时间跨度在分钟到小时

交互式查询:通常时间跨度在十秒到数十分钟

流处理(实时处理):通常跨度在数百毫秒到数秒

在面对上述的三个场景中,我们通常的解决方案是:


MapReduce

Hive

Impala 或 Storm

但是对应的也带来一些新的问题:


不同场景之间输入输出数据无法做到无缝共享,通常需要进行数据格式的转换、

不同的软件需要不同的开发和维护团队,带来了较高的维护和使用成本

比较难以通一个集群中的各个系统进行统一的资源协调和分配

系统架构

Spark运行包括如下:


Cluster Manager

Worker Node

Driver

Executor

ClusterManager

ClusterManager 是集群资源的管理者,Spark支持3中集群部署模式:


Standalone

YARN

Mesos

WorkerNode

WorkerNode是工作节点,负责管理本地资源。


Driver Program

运行应用的 main() 方法并且创建了 SparkContext。由ClusterManager分配资源,SparkContext发送Task到Executor上执行。


Executor

Executor在工作节点上运行,执行Driver发送的Task,并向Driver汇报计算结果。


部署模式

Standalone

独立模式,自带完整的服务,可单独部署到一个集群中,无需依赖其他任何的资源管理系统,从一定程度上说,该模式是其他模式的基础

Cluster Manager: Master

WorkerNode:Worker

仅支持粗粒度的资源分配方式

SparkOnYARN

YARN拥有强大的社区支持,且逐步成为大数据集群资源管理系统的标准

在国内生产环境中运用最广泛的部署模式

SparkOnYARN 支持的两种模式:yarn-cluster(生产环境),yarn-client(交互和调试)

Cluster Manager:ResourceManager

WorkNode:NodeManager

仅支持粗粒度的资源分配方式

SparkOnMesos

官方推荐模式,Spark开发之初就考虑到了支持Mesos

Spark运行在Mesos上会更加的灵活,更加自然

ClusterManager:MesosMaster

WorkNode: MesosSlave

支持粗粒度、细粒度的资源分配方式

粗粒度模式

Coarse-grained Mode:每个程序的运行由一个Driver和若干个Executor组成,其中每个Executor占用若干资源,内部可以运行多个Task。应用程序的各个任务正式运行之前,需要将运行环境中的资源全部申请好,且运行过程中需要一直占用着这些资源,即使不用,最后程序运行结束后,自动回收这些资源。


细粒度模式

鉴于粗粒度模式造成的大量资源的浪费,SparkOnMesos还提供了另一个调度模式就是细粒度模式。

这种模式类似于现在的云计算思想,核心是按需分配。


如何选择

生产环境中原则YARN,国内使用最广的模式

Spark的初学者,Standalone模式,简单

开发测试环境可选Standalone

数据量不太大、应用不复杂,可使用Standalone

相关术语

Application 用户提交的Spark应用程序,由集群中的一个Driver和许多的Executor组成

ApplicationJAR 一个包含Spark应用程序的JAR,JAR不应该包含Spark或者Hasoop的JAR

DriverProgram运行应用程序的main(),并创建SparkContext

ClusterManager管理集群资源的服务,如Standalone、YARN、Mesos

DeployMode区分Driver进程在何处运行,在Cluster模式下,在集群内部运行Driver,在Client模式下,Driver在集群外部运行

Worker Node 运行应用程序的工作节点

Executor 运行应用程序Task和保存数据,每个应用程序都有自己的Executors,并且和Executor相互独立

Task Executors 应用程序的最小单元

Job,在用户程序中,每次调用Action函数都会产生一个新的Job,也就是说每一个Action都会生成一个Job

Stage,一个Job被分解为多个Stage,每个Stage是一系列Task的集合


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
8月前
|
数据采集 运维 Serverless
云函数采集架构:Serverless模式下的动态IP与冷启动优化
本文探讨了在Serverless架构中使用云函数进行网页数据采集的挑战与解决方案。针对动态IP、冷启动及目标网站反爬策略等问题,提出了动态代理IP、请求头优化、云函数预热及容错设计等方法。通过网易云音乐歌曲信息采集案例,展示了如何结合Python代码实现高效的数据抓取,包括搜索、歌词与评论的获取。此方案不仅解决了传统采集方式在Serverless环境下的局限,还提升了系统的稳定性和性能。
233 0
|
9月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
410 79
|
12月前
|
NoSQL 关系型数据库 MySQL
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
418 56
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
|
9月前
|
运维 供应链 前端开发
中小医院云HIS系统源码,系统融合HIS与EMR功能,采用B/S架构与SaaS模式,快速交付并简化运维
这是一套专为中小医院和乡镇卫生院设计的云HIS系统源码,基于云端部署,采用B/S架构与SaaS模式,快速交付并简化运维。系统融合HIS与EMR功能,涵盖门诊挂号、预约管理、一体化电子病历、医生护士工作站、收费财务、药品进销存及统计分析等模块。技术栈包括前端Angular+Nginx,后端Java+Spring系列框架,数据库使用MySQL+MyCat。该系统实现患者管理、医嘱处理、费用结算、药品管控等核心业务全流程数字化,助力医疗机构提升效率和服务质量。
505 4
|
12月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
569 4
|
缓存 负载均衡 JavaScript
探索微服务架构下的API网关模式
【10月更文挑战第37天】在微服务架构的海洋中,API网关犹如一座灯塔,指引着服务的航向。它不仅是客户端请求的集散地,更是后端微服务的守门人。本文将深入探讨API网关的设计哲学、核心功能以及它在微服务生态中扮演的角色,同时通过实际代码示例,揭示如何实现一个高效、可靠的API网关。
|
分布式计算 资源调度 Hadoop
【赵渝强老师】部署Hadoop的本地模式
本文介绍了Hadoop的目录结构及本地模式部署方法,包括解压安装、设置环境变量、配置Hadoop参数等步骤,并通过一个简单的WordCount程序示例,演示了如何在本地模式下运行MapReduce任务。
332 0

热门文章

最新文章