大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(新开的坑!正在更新!)

章节内容

上节我们完成了如下的内容:


Kafka集群监控方案

JConsole

Kafka Eagle

JavaAPI获取集群指标

简单介绍

在技术的不断迭代中,一路发展,三代技术引擎:

  • MapReduce 昨天
  • Spark 今天
  • Flink 未来

MapReduceSpark都是类MR的处理引擎,底层原理非常相似。

什么是Spark

Spark的发展历程如下图: Spark特点

速度快,与MapReduce相比,Spark基于内存运算要快100倍以上,基于硬盘运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效的处理流数据

使用简单,Spark支持Scala、Java、Python、R的API,还支持超过80种算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的Shell,可以非常方便的在这些Shell中使用Spark集群来验证解决问题的方法

通用性好,Spark提供了统一的解决方案,Spark可以用于批处理、交互式查询(SparkSQL)、实时流处理(SparkStreaming)、机器学习(SparkMLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝衔接。Spark统一解决方案非常具有吸引力,企业想用统一的平台去处理遇到的问题,减少开发和维护人力的成本和部署平台的物力成本。

兼容性好,Spark可以非常方便的和其他开源的产品进行融合,Spark可以使用YARN、Mesos作为它的资源管理和调度器。可以处理所有Hadoop支持的数据,包括HDFS、HBase、Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要任何的数据迁移就可以使用Spark。Spark也可以不依赖于其它第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人可以非常容器的部署和使用Spark。

Spark与Hadoop

狭义上

从狭义上看:Hadoop是一个分布式框架,由存储、资源调度、计算三部分组成

Spark是一个分布式计算引擎,是由Scala编写的计算框架,基于内存的快速、通用、可扩展的大数据分析引擎。


广义上

从广义上看:Spark是Hadoop生态中不可或缺的一部分。


MapReduce不足

表达能力有限

磁盘IO开销大

延迟高:任务之间有IO开销,在前一个任务完成之前,另一个任务无法开始。

相对于Spark,Spark的设计要更高效,Spark在借鉴MapReduce优点的同时,很好的解决了MapReduce所面临的问题:

两者对比

Spark的计算模式也属于MapReduce,是对MR框架的优化。


数据存储结构:MapReduce是磁盘HDFS,Spark是内存构建的弹性分布式数据集RDD

编程范式:Map+Reduce表达力欠缺,Spark提供了丰富操作使数据处理代码很短

运行速度:MapReduce计算中间结果存磁盘,Spark中间结果在内存中

任务速度:MapReduce任务以进程,需要数秒启动,Spark是小数据集读取在亚秒级

实际应用

批量处理(离线处理):通常时间跨度在分钟到小时

交互式查询:通常时间跨度在十秒到数十分钟

流处理(实时处理):通常跨度在数百毫秒到数秒

在面对上述的三个场景中,我们通常的解决方案是:


MapReduce

Hive

Impala 或 Storm

但是对应的也带来一些新的问题:


不同场景之间输入输出数据无法做到无缝共享,通常需要进行数据格式的转换、

不同的软件需要不同的开发和维护团队,带来了较高的维护和使用成本

比较难以通一个集群中的各个系统进行统一的资源协调和分配

系统架构

Spark运行包括如下:


Cluster Manager

Worker Node

Driver

Executor

ClusterManager

ClusterManager 是集群资源的管理者,Spark支持3中集群部署模式:


Standalone

YARN

Mesos

WorkerNode

WorkerNode是工作节点,负责管理本地资源。


Driver Program

运行应用的 main() 方法并且创建了 SparkContext。由ClusterManager分配资源,SparkContext发送Task到Executor上执行。


Executor

Executor在工作节点上运行,执行Driver发送的Task,并向Driver汇报计算结果。


部署模式

Standalone

独立模式,自带完整的服务,可单独部署到一个集群中,无需依赖其他任何的资源管理系统,从一定程度上说,该模式是其他模式的基础

Cluster Manager: Master

WorkerNode:Worker

仅支持粗粒度的资源分配方式

SparkOnYARN

YARN拥有强大的社区支持,且逐步成为大数据集群资源管理系统的标准

在国内生产环境中运用最广泛的部署模式

SparkOnYARN 支持的两种模式:yarn-cluster(生产环境),yarn-client(交互和调试)

Cluster Manager:ResourceManager

WorkNode:NodeManager

仅支持粗粒度的资源分配方式

SparkOnMesos

官方推荐模式,Spark开发之初就考虑到了支持Mesos

Spark运行在Mesos上会更加的灵活,更加自然

ClusterManager:MesosMaster

WorkNode: MesosSlave

支持粗粒度、细粒度的资源分配方式

粗粒度模式

Coarse-grained Mode:每个程序的运行由一个Driver和若干个Executor组成,其中每个Executor占用若干资源,内部可以运行多个Task。应用程序的各个任务正式运行之前,需要将运行环境中的资源全部申请好,且运行过程中需要一直占用着这些资源,即使不用,最后程序运行结束后,自动回收这些资源。


细粒度模式

鉴于粗粒度模式造成的大量资源的浪费,SparkOnMesos还提供了另一个调度模式就是细粒度模式。

这种模式类似于现在的云计算思想,核心是按需分配。


如何选择

生产环境中原则YARN,国内使用最广的模式

Spark的初学者,Standalone模式,简单

开发测试环境可选Standalone

数据量不太大、应用不复杂,可使用Standalone

相关术语

Application 用户提交的Spark应用程序,由集群中的一个Driver和许多的Executor组成

ApplicationJAR 一个包含Spark应用程序的JAR,JAR不应该包含Spark或者Hasoop的JAR

DriverProgram运行应用程序的main(),并创建SparkContext

ClusterManager管理集群资源的服务,如Standalone、YARN、Mesos

DeployMode区分Driver进程在何处运行,在Cluster模式下,在集群内部运行Driver,在Client模式下,Driver在集群外部运行

Worker Node 运行应用程序的工作节点

Executor 运行应用程序Task和保存数据,每个应用程序都有自己的Executors,并且和Executor相互独立

Task Executors 应用程序的最小单元

Job,在用户程序中,每次调用Action函数都会产生一个新的Job,也就是说每一个Action都会生成一个Job

Stage,一个Job被分解为多个Stage,每个Stage是一系列Task的集合


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
5月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
存储 SQL 分布式计算
19章构建企业级大数据平台:从架构设计到数据治理的完整链路
开源社区: 贡献者路径:从提交Issue到成为Committer 会议演讲:通过DataWorks Summit提升影响力 标准制定: 白皮书撰写:通过DAMA数据治理框架认证 专利布局:通过架构设计专利构建技术壁垒
|
7月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
712 70
|
12天前
|
分布式计算 Kubernetes 调度
Kubeflow-Spark-Operator-架构学习指南
本指南系统解析 Spark Operator 架构,涵盖 Kubebuilder 开发、控制器设计与云原生集成。通过四阶段学习路径,助你从部署到贡献,掌握 Kubernetes Operator 核心原理与实战技能。
45 0
|
1月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
144 1
|
2月前
|
SQL 存储 监控
流处理 or 批处理?大数据架构还需要流批一体吗?
简介:流处理与批处理曾是实时监控与深度分析的两大支柱,但二者在数据、代码与资源上的割裂,导致维护成本高、效率低。随着业务对数据实时性与深度分析的双重需求提升,传统架构难以为继,流批一体应运而生。它旨在通过逻辑、存储与资源的统一,实现一套系统、一套代码同时支持实时与离线处理,提升效率与一致性,成为未来大数据架构的发展方向。
|
3月前
|
消息中间件 分布式计算 大数据
“一上来就搞大数据架构?等等,你真想清楚了吗?”
“一上来就搞大数据架构?等等,你真想清楚了吗?”
70 1
|
3月前
|
SQL JSON 分布式计算
Spark SQL架构及高级用法
Spark SQL基于Catalyst优化器与Tungsten引擎,提供高效的数据处理能力。其架构涵盖SQL解析、逻辑计划优化、物理计划生成及分布式执行,支持复杂数据类型、窗口函数与多样化聚合操作,结合自适应查询与代码生成技术,实现高性能大数据分析。
|
4月前
|
架构师 Oracle 大数据
从大数据时代变迁到数据架构师的精通之路
无论从事何种职业,自学能力都显得尤为重要。为了不断提升自己,我们可以尝试建立一套个性化的知识目录或索引,通过它来发现自身的不足,并有针对性地进行学习。对于数据架构师而言,他们需要掌握的知识领域广泛而深入,不仅包括硬件、网络、安全等基础技术,还要了解应用层面,并熟练掌握至少一门编程语言。同时,深入理解数据库技术、具备大数据实操经验以及精通数据仓库建模和ELT技术也是必不可少的。只有这样,数据架构师才能具备足够的深度和广度,应对复杂的业务和技术挑战。 构建个人知识体系是数据架构师在学习和工作中的一项重要任务。通过系统化、不断深化的知识积累,数据架构师能够有效应对快速变化的商业环境和技术革新,进一