了解在什么情况下应当使用@MapperScan注解
总结而言,`@MapperScan`注解的使用能大大简化MyBatis与Spring Boot结合时的配置工作,特别是在中大型项目中,它能有效减轻开发人员的负担,确保持久化层的整洁性和可维护性。在设计系统的初期就考虑使用 `@MapperScan`注解,可以为后续的项目维护打下良好基础。
数据库连接池详解及性能优化趋势
Sharding-JDBC所构建的Database Mesh与Service Mesh相互独立,协同工作。服务间的交互由Service Mesh Sidecar负责管理,而基于SQL的数据库访问则交由Sharding-JDBC-Sidecar处理。业务应用无需关心物理部署细节,实现真正的零侵入。Sharding-JDBC-Sidecar与宿主机生命周期绑定,非静态IP,确保了动态和弹性。尽管如此,数据运维操作仍可通过启动Sharding-JDBC-Server进程作为静态IP入口,借助命令行或UI客户端轻松完成。
五大主流数据库连接池的深度剖析与对比
HikariCP通过优化concurrentBag和fastStatementList等集合,提升了并发的读写效率。它采用threadlocal缓存连接,并大量运用CAS机制,以最大程度地减少lock的使用。从字节码的维度进行代码优化,确保方法尽量控制在35个字节码以内,以提升JVM处理效率。HikariCP在此基础上的进一步优化措施包括:利用ping命令进行mysql连接,以及通过Sharding-JDBC的Driver、Server和Sidecar三个版本,构建灵活多样的生态系统,满足不同需求和环境。对于线上应用,Sharding-JDBC-Driver可提供直连数据库的最优性能,而Sha
后端开发中的错误处理实践:原则与实战
在后端开发中,错误处理是保障系统稳定性的关键。本文介绍了错误分类、响应设计、统一处理机制及日志追踪等实践方法,帮助开发者提升系统的可维护性与排障效率,做到防患于未然。
Django数据库配置避坑指南:从初始化到生产环境的实战优化
本文介绍了Django数据库配置与初始化实战,涵盖MySQL等主流数据库的配置方法及常见问题处理。内容包括数据库连接设置、驱动安装、配置检查、数据表生成、初始数据导入导出,并提供真实项目部署场景的操作步骤与示例代码,适用于开发、测试及生产环境搭建。
一个完整 Java 项目常包含的各层次详解与全面解析
本内容介绍了Java项目的典型分层架构,涵盖开放接口层、终端显示层、Web层、Service层、Manager层、Mapper层及常用辅助层次,如实体层、DTO层、VO层等。通过合理划分各层职责,结合Spring Boot等框架,实现系统的高内聚、低耦合,提升可维护性与扩展性,适用于微服务与MVC架构设计。