一、Kafka 简介
1、Kafka 创建背景
Kafka 是一个消息系统,原本开发自 LinkedIn,用作 LinkedIn 的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础。现在它已被多家不同类型的公司作为多种类型的数据管道和消息系统使用。
活动流数据是几乎所有站点在对其网站使用情况做报表时都要用到的数据中最常规的部分。活动数据包括页面访问量(Page View)、被查看内容方面的信息以及搜索情况等内容。这种数据通常的处理方式是先把各种活动以日志的形式写入某种文件,然后周期性地对这些文件进行统计分析。运营数据指的是服务器的性能数据(CPU、IO 使用率、请求时间、服务日志等等数据)。运营数据的统计方法种类繁多。
近年来,活动和运营数据处理已经成为了网站软件产品特性中一个至关重要的组成部分,这就需要一套稍微更加复杂的基础设施对其提供支持。
2、Kafka 简介
Kafka 是一种分布式的,基于发布 / 订阅的消息系统。主要设计目标如下:
以时间复杂度为 O(1) 的方式提供消息持久化能力,即使对 TB 级以上数据也能保证常数时间复杂度的访问性能。
高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒 100K 条以上消息的传输。
支持 Kafka Server 间的消息分区,及分布式消费,同时保证每个 Partition 内的消息顺序传输。
同时支持离线数据处理和实时数据处理。
Scale out:支持在线水平扩展。
3、Kafka 基础概念
概念一:生产者与消费者
对于 Kafka 来说客户端有两种基本类型:生产者(Producer)和消费者(Consumer)。除此之外,还有用来做数据集成的 Kafka Connect API 和流式处理的 Kafka Streams 等高阶客户端,但这些高阶客户端底层仍然是生产者和消费者API,它们只不过是在上层做了封装。
这很容易理解,生产者(也称为发布者)创建消息,而消费者(也称为订阅者)负责消费or读取消息。
概念二:主题(Topic)与分区(Partition)
在 Kafka 中,消息以主题(Topic)来分类,每一个主题都对应一个「消息队列」,这有点儿类似于数据库中的表。但是如果我们把所有同类的消息都塞入到一个“中心”队列中,势必缺少可伸缩性,无论是生产者/消费者数目的增加,还是消息数量的增加,都可能耗尽系统的性能或存储。
我们使用一个生活中的例子来说明:现在 A 城市生产的某商品需要运输到 B 城市,走的是公路,那么单通道的高速公路不论是在「A 城市商品增多」还是「现在 C 城市也要往 B 城市运输东西」这样的情况下都会出现「吞吐量不足」的问题。所以我们现在引入分区(Partition)的概念,类似“允许多修几条道”的方式对我们的主题完成了水平扩展。
概念三:Broker 和集群(Cluster)
一个 Kafka 服务器也称为 Broker,它接受生产者发送的消息并存入磁盘;Broker 同时服务消费者拉取分区消息的请求,返回目前已经提交的消息。使用特定的机器硬件,一个 Broker 每秒可以处理成千上万的分区和百万量级的消息。(现在动不动就百万量级…我特地去查了一把,好像确实集群的情况下吞吐量挺高的…摁…)
若干个 Broker 组成一个集群(Cluster),其中集群内某个 Broker 会成为集群控制器(Cluster Controller),它负责管理集群,包括分配分区到 Broker、监控 Broker 故障等。在集群内,一个分区由一个 Broker 负责,这个 Broker 也称为这个分区的 Leader;当然一个分区可以被复制到多个 Broker 上来实现冗余,这样当存在 Broker 故障时可以将其分区重新分配到其他 Broker 来负责。下图是一个样例:
Kafka 的一个关键性质是日志保留(retention),我们可以配置主题的消息保留策略,譬如只保留一段时间的日志或者只保留特定大小的日志。当超过这些限制时,老的消息会被删除。我们也可以针对某个主题单独设置消息过期策略,这样对于不同应用可以实现个性化。
概念四:多集群
随着业务发展,我们往往需要多集群,通常处于下面几个原因:
基于数据的隔离
基于安全的隔离
多数据中心(容灾)
当构建多个数据中心时,往往需要实现消息互通。举个例子,假如用户修改了个人资料,那么后续的请求无论被哪个数据中心处理,这个更新需要反映出来。又或者,多个数据中心的数据需要汇总到一个总控中心来做数据分析。
上面说的分区复制冗余机制只适用于同一个 Kafka 集群内部,对于多个 Kafka 集群消息同步可以使用 Kafka 提供的 MirrorMaker 工具。本质上来说,MirrorMaker 只是一个 Kafka 消费者和生产者,并使用一个队列连接起来而已。它从一个集群中消费消息,然后往另一个集群生产消息。
二、Kafka 的设计与实现
上面我们知道了 Kafka 中的一些基本概念,但作为一个成熟的「消息队列」中间件,其中有许多有意思的设计值得我们思考,下面我们简单列举一些。
讨论一:Kafka 存储在文件系统上
是的,您首先应该知道 Kafka 的消息是存在于文件系统之上的。Kafka 高度依赖文件系统来存储和缓存消息,一般的人认为 “磁盘是缓慢的”,所以对这样的设计持有怀疑态度。实际上,磁盘比人们预想的快很多也慢很多,这取决于它们如何被使用;一个好的磁盘结构设计可以使之跟网络速度一样快。
现代的操作系统针对磁盘的读写已经做了一些优化方案来加快磁盘的访问速度。比如,预读会提前将一个比较大的磁盘快读入内存。后写会将很多小的逻辑写操作合并起来组合成一个大的物理写操作。并且,操作系统还会将主内存剩余的所有空闲内存空间都用作磁盘缓存,所有的磁盘读写操作都会经过统一的磁盘缓存(除了直接 I/O 会绕过磁盘缓存)。综合这几点优化特点,如果是针对磁盘的顺序访问,某些情况下它可能比随机的内存访问都要快,甚至可以和网络的速度相差无几。
上述的 Topic 其实是逻辑上的概念,面相消费者和生产者,物理上存储的其实是 Partition,每一个 Partition 最终对应一个目录,里面存储所有的消息和索引文件。默认情况下,每一个 Topic 在创建时如果不指定 Partition 数量时只会创建 1 个 Partition。比如,我创建了一个 Topic 名字为 test ,没有指定 Partition 的数量,那么会默认创建一个 test-0 的文件夹,这里的命名规则是:<topic_name>-<partition_id>。
任何发布到 Partition 的消息都会被追加到 Partition 数据文件的尾部,这样的顺序写磁盘操作让 Kafka 的效率非常高(经验证,顺序写磁盘效率比随机写内存还要高,这是 Kafka 高吞吐率的一个很重要的保证)。
每一条消息被发送到 Broker 中,会根据 Partition 规则选择被存储到哪一个 Partition。如果 Partition 规则设置的合理,所有消息可以均匀分布到不同的 Partition中。
讨论二:Kafka 中的底层存储设计
假设我们现在 Kafka 集群只有一个 Broker,我们创建 2 个 Topic 名称分别为:「topic1」和「topic2」,Partition 数量分别为 1、2,那么我们的根目录下就会创建如下三个文件夹:
| --topic1-0 | --topic2-0 | --topic2-1
在 Kafka 的文件存储中,同一个 Topic 下有多个不同的 Partition,每个 Partition 都为一个目录,而每一个目录又被平均分配成多个大小相等的 Segment File 中,Segment File 又由 index file 和 data file 组成,他们总是成对出现,后缀 “.index” 和 “.log” 分表表示 Segment 索引文件和数据文件。
现在假设我们设置每个 Segment 大小为 500 MB,并启动生产者向 topic1 中写入大量数据,topic1-0 文件夹中就会产生类似如下的一些文件:
| --topic1-0 | --00000000000000000000.index | --00000000000000000000.log | --00000000000000368769.index | --00000000000000368769.log | --00000000000000737337.index | --00000000000000737337.log | --00000000000001105814.index | --00000000000001105814.log | --topic2-0 | --topic2-1
Segment 是 Kafka 文件存储的最小单位。Segment 文件命名规则:Partition 全局的第一个 Segment 从 0 开始,后续每个 Segment 文件名为上一个 Segment 文件最后一条消息的 offset 值。数值最大为 64 位 long 大小,19 位数字字符长度,没有数字用0填充。如 00000000000000368769.index 和 00000000000000368769.log。
以上面的一对 Segment File 为例,说明一下索引文件和数据文件对应关系:
其中以索引文件中元数据 <3, 497> 为例,依次在数据文件中表示第 3 个 message(在全局 Partition 表示第 368769 + 3 = 368772 个 message)以及该消息的物理偏移地址为 497。
注意该 index 文件并不是从0开始,也不是每次递增1的,这是因为 Kafka 采取稀疏索引存储的方式,每隔一定字节的数据建立一条索引,它减少了索引文件大小,使得能够把 index 映射到内存,降低了查询时的磁盘 IO 开销,同时也并没有给查询带来太多的时间消耗。
因为其文件名为上一个 Segment 最后一条消息的 offset ,所以当需要查找一个指定 offset 的 message 时,通过在所有 segment 的文件名中进行二分查找就能找到它归属的 segment ,再在其 index 文件中找到其对应到文件上的物理位置,就能拿出该 message 。
由于消息在 Partition 的 Segment 数据文件中是顺序读写的,且消息消费后不会删除(删除策略是针对过期的 Segment 文件),这种顺序磁盘 IO 存储设计师 Kafka 高性能很重要的原因。
Kafka 是如何准确的知道 message 的偏移的呢?这是因为在 Kafka 定义了标准的数据存储结构,在 Partition 中的每一条 message 都包含了以下三个属性:
offset:表示 message 在当前 Partition 中的偏移量,是一个逻辑上的值,唯一确定了 Partition 中的一条 message,可以简单的认为是一个 id;
MessageSize:表示 message 内容 data 的大小;
data:message 的具体内容
讨论三:生产者设计概要
当我们发送消息之前,先问几个问题:每条消息都是很关键且不能容忍丢失么?偶尔重复消息可以么?我们关注的是消息延迟还是写入消息的吞吐量?
举个例子,有一个信用卡交易处理系统,当交易发生时会发送一条消息到 Kafka,另一个服务来读取消息并根据规则引擎来检查交易是否通过,将结果通过 Kafka 返回。对于这样的业务,消息既不能丢失也不能重复,由于交易量大因此吞吐量需要尽可能大,延迟可以稍微高一点。
再举个例子,假如我们需要收集用户在网页上的点击数据,对于这样的场景,少量消息丢失或者重复是可以容忍的,延迟多大都不重要只要不影响用户体验,吞吐则根据实时用户数来决定。
不同的业务需要使用不同的写入方式和配置。具体的方式我们在这里不做讨论,现在先看下生产者写消息的基本流程:
流程如下:
1.首先,我们需要创建一个ProducerRecord,这个对象需要包含消息的主题(topic)和值(value),可以选择性指定一个键值(key)或者分区(partition)。
2.发送消息时,生产者会对键值和值序列化成字节数组,然后发送到分配器(partitioner)。
3.如果我们指定了分区,那么分配器返回该分区即可;否则,分配器将会基于键值来选择一个分区并返回。
4.选择完分区后,生产者知道了消息所属的主题和分区,它将这条记录添加到相同主题和分区的批量消息中,另一个线程负责发送这些批量消息到对应的Kafka broker。
5.当broker接收到消息后,如果成功写入则返回一个包含消息的主题、分区及位移的RecordMetadata对象,否则返回异常。
6.生产者接收到结果后,对于异常可能会进行重试。