springboot配置kafka生产者和消费者详解

简介: 在原有pom.xml依赖下新添加一下kafka依赖ar包 org.springframework.kafka spring-kafka 1.

在原有pom.xml依赖下新添加一下kafka依赖ar包

<!--kafka-->
		<dependency>
			<groupId>org.springframework.kafka</groupId>
			<artifactId>spring-kafka</artifactId>
			<version>1.1.1.RELEASE</version>
		</dependency>
		<dependency>
			<groupId>org.apache.kafka</groupId>
			<artifactId>kafka_2.10</artifactId>
			<version>0.10.0.1</version>
		</dependency>
AI 代码解读

application.properties:

#原始数据kafka读取
kafka.consumer.servers=IP:9092,IP:9092(kafka消费集群ip+port端口)
kafka.consumer.enable.auto.commit=true(是否自动提交)
kafka.consumer.session.timeout=20000(连接超时时间)
kafka.consumer.auto.commit.interval=100
kafka.consumer.auto.offset.reset=latest(实时生产,实时消费,不会从头开始消费)
kafka.consumer.topic=result(消费的topic)
kafka.consumer.group.id=test(消费组)
kafka.consumer.concurrency=10(设置消费线程数)

#协议转换后存储kafka
kafka.producer.servers=IP:9092,IP:9092(kafka生产集群ip+port端口)
kafka.producer.topic=result(生产的topic)
kafka.producer.retries=0
kafka.producer.batch.size=4096
kafka.producer.linger=1
kafka.producer.buffer.memory=40960
AI 代码解读

springboot生产者配置:

package com.mapbar.track_storage.config;

import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;

import java.util.HashMap;
import java.util.Map;

/**
 * kafka生产配置
 * @author Lvjiapeng
 *
 */
@Configuration
@EnableKafka
public class KafkaProducerConfig {
	@Value("${kafka.producer.servers}")
    private String servers;
    @Value("${kafka.producer.retries}")
    private int retries;
    @Value("${kafka.producer.batch.size}")
    private int batchSize;
    @Value("${kafka.producer.linger}")
    private int linger;
    @Value("${kafka.producer.buffer.memory}")
    private int bufferMemory;
    
    public Map<String, Object> producerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        props.put(ProducerConfig.RETRIES_CONFIG, retries);
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
        props.put(ProducerConfig.LINGER_MS_CONFIG, linger);
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }

    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

    @Bean
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<String, String>(producerFactory());
    }
}
AI 代码解读

springboot消费者配置:

package com.mapbar.track_storage.config;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;

import java.util.HashMap;
import java.util.Map;

/**
 * kafka消费者配置
 * @author Lvjiapeng
 *
 */
@Configuration
@EnableKafka
public class KafkaConsumerConfig {

    @Value("${kafka.consumer.servers}")
    private String servers;
    @Value("${kafka.consumer.enable.auto.commit}")
    private boolean enableAutoCommit;
    @Value("${kafka.consumer.session.timeout}")
    private String sessionTimeout;
    @Value("${kafka.consumer.auto.commit.interval}")
    private String autoCommitInterval;
    @Value("${kafka.consumer.group.id}")
    private String groupId;
    @Value("${kafka.consumer.auto.offset.reset}")
    private String autoOffsetReset;
    @Value("${kafka.consumer.concurrency}")
    private int concurrency;
    
    @Bean
    public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(concurrency);
        factory.getContainerProperties().setPollTimeout(1500);
        return factory;
    }

    public ConsumerFactory<String, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }


    public Map<String, Object> consumerConfigs() {
        Map<String, Object> propsMap = new HashMap<>();
        propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
        propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
        propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
        propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
        return propsMap;
    }
    /**
     * kafka监听
     * @return
     */
    @Bean
    public RawDataListener listener() {
        return new RawDataListener();
    }

}
AI 代码解读

生产者测试:

package com.mapbar.track_storage.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

@RequestMapping(value = "/kafka")
@Controller
public class ProducerController {
    @Autowired
    private KafkaTemplate kafkaTemplate;

    @RequestMapping(value = "/producer",method = RequestMethod.GET)
    public void consume(HttpServletRequest request, HttpServletResponse response) throws IOException{
        String value = "{\"code\":200,\"dataVersion\":\"17q1\",\"message\":\"\",\"id\":\"364f79f28eea48eefeca8c85477a10d3\",\"source\":\"didi\",\"tripList\":[{\"subTripList\":[{\"startTimeStamp\":1519879598,\"schemeList\":[{\"distance\":0.0,\"ids\":\"94666702,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519879598,\"subTripId\":0},{\"startTimeStamp\":1519879727,\"schemeList\":[{\"distance\":1395.0,\"ids\":\"94666729,7298838,7291709,7291706,88613298,88613297,7297542,7297541,94698785,94698786,94698778,94698780,94698779,94698782,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519879812,\"subTripId\":1},{\"startTimeStamp\":1519879836,\"schemeList\":[{\"distance\":0.0,\"ids\":\"54123007,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519879904,\"subTripId\":2},{\"startTimeStamp\":1519879959,\"schemeList\":[{\"distance\":0.0,\"ids\":\"54190443,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519879959,\"subTripId\":3},{\"startTimeStamp\":1519880088,\"schemeList\":[{\"distance\":2885.0,\"ids\":\"94698824,94698822,94698789,94698786,54123011,54123012,54123002,94698763,94698727,94698722,94698765,54123006,54123004,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519880300,\"subTripId\":4},{\"startTimeStamp\":1519880393,\"schemeList\":[{\"distance\":2398.0,\"ids\":\"7309441,7303680,54123061,54123038,7309478,7309477,94698204,94698203,94698273,94698274,94698288,94698296,94698295,94698289,94698310,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519880636,\"subTripId\":5},{\"startTimeStamp\":1519881064,\"schemeList\":[{\"distance\":35.0,\"ids\":\"7309474,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519881204,\"subTripId\":6},{\"startTimeStamp\":1519881204,\"schemeList\":[{\"distance\":28.0,\"ids\":\"7309476,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519881266,\"subTripId\":7},{\"startTimeStamp\":1519881291,\"schemeList\":[{\"distance\":463.0,\"ids\":\"7303683,\",\"schemeId\":0,\"linkList\":[{\"score\":72,\"distance\":1,\"gpsList\":[{\"origLonLat\":\"116.321343,40.43242\",\"grabLonLat\":\"112.32312,40.32132\",\"timestamp\":1515149926000}]}]}],\"endTimeStamp\":1519881329,\"subTripId\":8}],\"startTimeStamp\":1519879350,\"unUseTime\":1201,\"totalTime\":2049,\"endTimeStamp\":1519881399,\"tripId\":0}]}";
        for (int i = 1; i<=500; i++){
            kafkaTemplate.send("result",value);
        }
    }
}
AI 代码解读

消费者测试:

import net.sf.json.JSONObject;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.log4j.Logger;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

import java.io.IOException;
import java.util.List;

/**
 * kafka监听
 * @author shangzz
 *
 */
@Component
public class RawDataListener {
	Logger logger=Logger.getLogger(RawDataListener.class);
	@Autowired
	private MatchRoadService matchRoadService;

	/**
	 * 实时获取kafka数据(生产一条,监听生产topic自动消费一条)
	 * @param record
	 * @throws IOException
	 */
	@KafkaListener(topics = {"${kafka.consumer.topic}"})
    public void listen(ConsumerRecord<?, ?> record) throws IOException {
		String value = (String) record.value();
		System.out.println(value);
	}

}
AI 代码解读

总结:

         ①  生产者环境类配置好以后,@Autowired自动注入KafkaTemplate类,使用send方法生产消息

         ②  消费者环境类配置好以后,方法头前使用@KafkaListener(topics = {"${kafka.consumer.topic}"})注解监听topic并传入ConsumerRecord<?, ?> record对象即可自动消费topic

         ③  相关kafka配置只需在application.properties照葫芦画瓢添加,修改或者删除配置并在环境配置类中做出相应修改即可

目录
打赏
0
0
0
0
2
分享
相关文章
Spring Boot整合kafka
本文简要记录了Spring Boot与Kafka的整合过程。首先通过Docker搭建Kafka环境,包括Zookeeper和Kafka服务的配置文件。接着引入Spring Kafka依赖,并在`application.properties`中配置生产者和消费者参数。随后创建Kafka配置类,定义Topic及重试机制。最后实现生产者发送消息和消费者监听消息的功能,支持手动ACK确认。此方案适用于快速构建基于Spring Boot的Kafka消息系统。
【赵渝强老师】Kafka生产者的执行过程
Kafka生产者(Producer)将消息序列化后发送到指定主题的分区。整个过程由主线程和Sender线程协调完成。主线程创建KafkaProducer对象及ProducerRecord,经过拦截器、序列化器和分区器处理后,消息进入累加器。Sender线程负责从累加器获取消息并发送至KafkaBroker,Broker返回响应或错误信息,生产者根据反馈决定是否重发。视频和图片详细展示了这一流程。
141 61
SpringBoot使用Kafka生产者、消费者
SpringBoot使用Kafka生产者、消费者
81 10
【赵渝强老师】Kafka生产者的消息发送方式
Kafka生产者支持三种消息发送方式:1. **fire-and-forget**:发送后不关心结果,适用于允许消息丢失的场景;2. **同步发送**:通过Future对象确保消息成功送达,适用于高可靠性需求场景;3. **异步发送**:使用回调函数处理结果,吞吐量较高但牺牲部分可靠性。视频和代码示例详细讲解了这三种方式的具体实现。
106 5
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
245 5
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
120 1
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
161 2
基于SpringBoot+Vue实现的留守儿童爱心网站设计与实现(计算机毕设项目实战+源码+文档)
博主是一位全网粉丝超过100万的CSDN特邀作者、博客专家,专注于Java、Python、PHP等技术领域。提供SpringBoot、Vue、HTML、Uniapp、PHP、Python、NodeJS、爬虫、数据可视化等技术服务,涵盖免费选题、功能设计、开题报告、论文辅导、答辩PPT等。系统采用SpringBoot后端框架和Vue前端框架,确保高效开发与良好用户体验。所有代码由博主亲自开发,并提供全程录音录屏讲解服务,保障学习效果。欢迎点赞、收藏、关注、评论,获取更多精品案例源码。
基于SpringBoot+Vue实现的家政服务管理平台设计与实现(计算机毕设项目实战+源码+文档)
面向大学生毕业选题、开题、任务书、程序设计开发、论文辅导提供一站式服务。主要服务:程序设计开发、代码修改、成品部署、支持定制、论文辅导,助力毕设!