ELK+Kafka 企业日志收集平台(一)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介:

 码字很辛苦,转载请注明来自运维人《ELK+Kafka 企业日志收集平台(一)》


背景:

最近线上上了ELK,但是只用了一台Redis在中间作为消息队列,以减轻前端es集群的压力,Redis的集群解决方案暂时没有接触过,并且Redis作为消息队列并不是它的强项;所以最近将Redis换成了专业的消息信息发布订阅系统Kafka, Kafka的更多介绍大家可以看这里:传送门  ,关于ELK的知识网上有很多的哦, 此篇博客主要是总结一下目前线上这个平台的实施步骤,ELK是怎么跟Kafka结合起来的。好吧,动手!

ELK架构拓扑:

然而我这里的整个日志收集平台就是这样的拓扑:
1

1,使用一台Nginx代理访问kibana的请求;
2,两台es组成es集群,并且在两台es上面都安装kibana;(以下对elasticsearch简称es
3,中间三台服务器就是我的kafka(zookeeper)集群啦; 上面写的消费者/生产者这是kafka(zookeeper)中的概念;
4,最后面的就是一大堆的生产服务器啦,上面使用的是logstash,当然除了logstash也可以使用其他的工具来收集你的应用程序的日志,例如:Flume,Scribe,Rsyslog,Scripts……

角色:

11111

软件选用:

elasticsearch-1.7.3.tar.gz #这里需要说明一下,前几天使用了最新的elasticsearch2.0,java-1.8.0报错,目前未找到原因,故这里使用1.7.3版本
Logstash-2.0.0.tar.gz
kibana-4.1.2-linux-x64.tar.gz
以上软件都可以从官网下载:https://www.elastic.co/downloads

java-1.8.0,nginx采用yum安装

部署步骤:

1.ES集群安装配置;

2.Logstash客户端配置(直接写入数据到ES集群,写入系统messages日志);

3.Kafka(zookeeper)集群配置;(Logstash写入数据到Kafka消息系统);

4.Kibana部署;

5.Nginx负载均衡Kibana请求;

6.案例:nginx日志收集以及MySQL慢日志收集;

7.Kibana报表基本使用;

ES集群安装配置;

es1.example.com:

1.安装java-1.8.0以及依赖包

yum install -y epel-release
yum install -y java-1.8.0 git wget lrzsz

2.获取es软件包

wget https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-1.7.3.tar.gz
tar -xf elasticsearch-1.7.3.tar.gz -C /usr/local
ln -sv /usr/local/elasticsearch-1.7.3 /usr/local/elasticsearch

3.修改配置文件

[root@es1 ~]# vim /usr/local/elasticsearch/config/elasticsearch.yml 
32 cluster.name: es-cluster                         #组播的名称地址
40 node.name: "es-node1 "                           #节点名称,不能和其他节点重复
47 node.master: true                                #节点能否被选举为master
51 node.data: true                                  #节点是否存储数据
107 index.number_of_shards: 5                       #索引分片的个数
111 index.number_of_replicas: 1                     #分片的副本个数
145 path.conf: /usr/local/elasticsearch/config/     #配置文件的路径
149 path.data: /data/es/data                        #数据目录路径
159 path.work: /data/es/worker                      #工作目录路径
163 path.logs:  /usr/local/elasticsearch/logs/      #日志文件路径
167 path.plugins:  /data/es/plugins                 #插件路径
184 bootstrap.mlockall: true                        #内存不向swap交换
232 http.enabled: true                              #启用http

4.创建相关目录

mkdir /data/es/{data,worker,plugins} -p

5.获取es服务管理脚本

[root@es1 ~]# git clone https://github.com/elastic/elasticsearch-servicewrapper.git
[root@es1 ~]# mv elasticsearch-servicewrapper/service /usr/local/elasticsearch/bin/
[root@es1 ~]# /usr/local/elasticsearch/bin/service/elasticsearch install 
Detected RHEL or Fedora:
Installing the Elasticsearch daemon..
[root@es1 ~]# 
#这时就会在/etc/init.d/目录下安装上es的管理脚本啦

#修改其配置:
[root@es1 ~]# 
set.default.ES_HOME=/usr/local/elasticsearch   #安装路径
set.default.ES_HEAP_SIZE=1024                  #jvm内存大小,根据实际环境调整即可

6.启动es ,并检查其服务是否正常

[root@es1 ~]# netstat -nlpt | grep -E "9200|"9300
tcp        0      0 0.0.0.0:9200                0.0.0.0:*                   LISTEN      1684/java           
tcp        0      0 0.0.0.0:9300                0.0.0.0:*                   LISTEN      1684/java

访问http://192.168.2.18:9200/ 如果出现以下提示信息说明安装配置完成啦,

2

7.es1节点好啦,我们直接把目录复制到es2

[root@es1 local]# scp -r elasticsearch-1.7.3  192.168.12.19:/usr/local/

[root@es2 local]# ln -sv elasticsearch-1.7.3 elasticsearch
[root@es2 local]# elasticsearch/bin/service/elasticsearch install

#es2只需要修改node.name即可,其他都与es1相同配置

8.安装es的管理插件

es官方提供一个用于管理es的插件,可清晰直观看到es集群的状态,以及对集群的操作管理,安装方法如下:

[root@es1 local]# /usr/local/elasticsearch/bin/plugin -i mobz/elasticsearch-head

安装好之后,访问方式为: http://192.168.2.18:9200/_plugin/head,由于集群中现在暂时没有数据,所以显示为空,

3

      此时,es集群的部署完成。

Logstash客户端安装配置;

在webserve1上面安装Logstassh

1.downloads  软件包 ,这里注意,Logstash是需要依赖java环境的,所以这里还是需要yum install -y java-1.8.0.

[root@webserver1 ~]# wget https://download.elastic.co/logstash/logstash/logstash-2.0.0.tar.gz
[root@webserver1 ~]# tar -xf logstash-2.0.0.tar.gz -C /usr/local
[root@webserver1 ~]# cd /usr/local/
[root@webserver1 local]# ln -sv logstash-2.0.0 logstash
[root@webserver1 local]# mkdir logs etc

2.提供logstash管理脚本,其中里面的配置路径可根据实际情况修改

#!/bin/bash
#chkconfig: 2345 55 24
#description: logstash service manager
#auto: Maoqiu Guo
FILE='/usr/local/logstash/etc/*.conf'    #logstash配置文件
LOGBIN='/usr/local/logstash/bin/logstash agent --verbose --config'  #指定logstash配置文件的命令
LOCK='/usr/local/logstash/locks'         #用锁文件配合服务启动与关闭
LOGLOG='--log /usr/local/logstash/logs/stdou.log'  #日志

START() {
	if [ -f $LOCK ];then
		echo -e "Logstash is already \033[32mrunning\033[0m, do nothing."
	else
		echo -e "Start logstash service.\033[32mdone\033[m"
		nohup ${LOGBIN} ${FILE} ${LOGLOG} &
		touch $LOCK
	fi
}

STOP() {
	if [ ! -f $LOCK ];then
		echo -e "Logstash is already stop, do nothing."
	else
		echo -e "Stop logstash serivce \033[32mdone\033[m"
		rm -rf $LOCK
		ps -ef | grep logstash | grep -v "grep" | awk '{print $2}' | xargs kill -s 9 >/dev/null
	fi
}

STATUS() {
	ps aux | grep logstash | grep -v "grep" >/dev/null
	if [ -f $LOCK ] && [ $? -eq 0 ]; then
		echo -e "Logstash is: \033[32mrunning\033[0m..."
	else
		echo -e "Logstash is: \033[31mstopped\033[0m..."
	fi
}

TEST(){
	${LOGBIN} ${FILE} --configtest
}

case "$1" in
  start)
	START
	;;
  stop)
	STOP
	;;
  status)
	STATUS
	;;
  restart)
	STOP 
        sleep 2
        START
	;;
  test)
	TEST
	;;
  *)
	echo "Usage: /etc/init.d/logstash (test|start|stop|status|restart)"
	;;
esac

3.Logstash 向es集群写数据

(1)编写一个logstash配置文件

[root@webserver1 etc]# cat logstash.conf 
input {              #数据的输入从标准输入
  stdin {}   
}

output {             #数据的输出我们指向了es集群
  elasticsearch {
    hosts => ["192.168.2.18:9200","192.168.2.19:9200"]   #es主机的ip及端口
  }
}
[root@webserver1 etc]#

(2)检查配置文件是否有语法错

[root@webserver1 etc]# /usr/local/logstash/bin/logstash -f logstash.conf --configtest --verbose
Configuration OK
[root@webserver1 etc]#

(3)既然配置ok我们手动启动它,然后写点东西看能否写到es

4.png

ok.上图已经看到logstash已经可以正常的工作啦.

4.下面演示一下如何收集系统日志

将之前的配置文件修改如下所示内容,然后启动logstash服务就可以在web页面中看到messages的日志写入es,并且创建了一条索引

[root@webserver1 etc]# cat logstash.conf 
input {       #这里的输入使用的文件,即日志文件messsages
  file {   
    path => "/var/log/messages"   #这是日志文件的绝对路径
    start_position => "beginning" #这个表示从messages的第一行读取,即文件开始处
  }
}

output {    #输出到es
  elasticsearch {
    hosts => ["192.168.2.18:9200","192.168.2.19:9200"]
    index => "system-messages-%{+YYYY-MM}"  #这里将按照这个索引格式来创建索引
  }
}
[root@webserver1 etc]#

启动logstash后,我们来看head这个插件的web页面

5

ok,系统日志我们已经成功的收集,并且已经写入到es集群中,那上面的演示是logstash直接将日志写入到es集群中的,这种场合我觉得如果量不是很大的话直接像上面已将将输出output定义到es集群即可,如果量大的话需要加上消息队列来缓解es集群的压力。前面已经提到了我这边之前使用的是单台redis作为消息队列,但是redis不能作为list类型的集群,也就是redis单点的问题没法解决,所以这里我选用了kafka ;下面就在三台server上面安装kafka集群

Kafka集群安装配置;

在搭建kafka集群时,需要提前安装zookeeper集群,当然kafka已经自带zookeeper程序只需要解压并且安装配置就行了

kafka1上面的配置:

1.获取软件包.官网:http://kafka.apache.org

[root@kafka1 ~]# wget http://mirror.rise.ph/apache/kafka/0.8.2.1/kafka_2.11-0.8.2.1.tgz
[root@kafka1 ~]# tar -xf kafka_2.11-0.8.2.1.tgz -C /usr/local/
[root@kafka1 ~]# cd /usr/local/
[root@kafka1 local]# ln -sv kafka_2.11-0.8.2.1 kafka

2.配置zookeeper集群,修改配置文件

[root@kafka1 ~]# vim /usr/local/kafka/config/zookeeper.propertie
dataDir=/data/zookeeper
clienrtPort=2181
tickTime=2000
initLimit=20
syncLimit=10
server.2=192.168.2.22:2888:3888
server.3=192.168.2.23:2888:3888
server.4=192.168.2.24:2888:3888

#说明:
tickTime: 这个时间是作为 Zookeeper 服务器之间或客户端与服务器之间维持心跳的时间间隔,也就是每个 tickTime 时间就会发送一个心跳。
2888端口:表示的是这个服务器与集群中的 Leader 服务器交换信息的端口;
3888端口:表示的是万一集群中的 Leader 服务器挂了,需要一个端口来重新进行选举,选出一个新的 Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

3.创建zookeeper所需要的目录

[root@kafka1 ~]# mkdir /data/zookeeper

4.在/data/zookeeper目录下创建myid文件,里面的内容为数字,用于标识主机,如果这个文件没有的话,zookeeper是没法启动的哦

[root@kafka1 ~]# echo 2 > /data/zookeeper/myid

以上就是zookeeper集群的配置,下面等我配置好kafka之后直接复制到其他两个节点即可

5.kafka配置

[root@kafka1 ~]# vim /usr/local/kafka/config/server.properties 
broker.id=2            # 唯一,填数字,本文中分别为2/3/4
prot=9092            # 这个broker监听的端口 
host.name=192.168.2.22   # 唯一,填服务器IP
log.dir=/data/kafka-logs  #  该目录可以不用提前创建,在启动时自己会创建
zookeeper.connect=192.168.2.22:2181,192.168.2.23:2181,192.168.2.24:2181  #这个就是zookeeper的ip及端口
num.partitions=16         # 需要配置较大 分片影响读写速度
log.dirs=/data/kafka-logs # 数据目录也要单独配置磁盘较大的地方
log.retention.hours=168   # 时间按需求保留过期时间 避免磁盘满

6.将kafka(zookeeper)的程序目录全部拷贝至其他两个节点

[root@kafka1 ~]# scp -r /usr/local/kafka 192.168.2.23:/usr/local/
[root@kafka1 ~]# scp -r /usr/local/kafka 192.168.2.24:/usr/local/

7.修改两个借点的配置,注意这里除了以下两点不同外,都是相同的配置

(1)zookeeper的配置
mkdir /data/zookeeper
echo "x" > /data/zookeeper/myid
(2)kafka的配置
broker.id=2
host.name=192.168.2.22

8.修改完毕配置之后我们就可以启动了,这里先要启动zookeeper集群,才能启动kafka

我们按照顺序来,kafka1 –> kafka2 –>kafka3

[root@kafka1 ~]# /usr/local/kafka/bin/zookeeper-server-start.sh /usr/local/kafka/config/zookeeper.properties &   #zookeeper启动命令
[root@kafka1 ~]# /usr/local/kafka/bin/zookeeper-server-stop.sh                                                   #zookeeper停止的命令

注意,如果zookeeper有问题 nohup的日志文件会非常大,把磁盘占满,这个zookeeper服务可以通过自己些服务脚本来管理服务的启动与关闭。

后面两台执行相同操作,在启动过程当中会出现以下报错信息

[2015-11-13 19:18:04,225] WARN Cannot open channel to 3 at election address /192.168.2.23:3888 (org.apache.zookeeper.server.quorum.QuorumCnxManager)
java.net.ConnectException: Connection refused
	at java.net.PlainSocketImpl.socketConnect(Native Method)
	at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
	at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
	at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
	at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
	at java.net.Socket.connect(Socket.java:589)
	at org.apache.zookeeper.server.quorum.QuorumCnxManager.connectOne(QuorumCnxManager.java:368)
	at org.apache.zookeeper.server.quorum.QuorumCnxManager.connectAll(QuorumCnxManager.java:402)
	at org.apache.zookeeper.server.quorum.FastLeaderElection.lookForLeader(FastLeaderElection.java:840)
	at org.apache.zookeeper.server.quorum.QuorumPeer.run(QuorumPeer.java:762)
[2015-11-13 19:18:04,232] WARN Cannot open channel to 4 at election address /192.168.2.24:3888 (org.apache.zookeeper.server.quorum.QuorumCnxManager)
java.net.ConnectException: Connection refused
	at java.net.PlainSocketImpl.socketConnect(Native Method)
	at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
	at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
	at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
	at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
	at java.net.Socket.connect(Socket.java:589)
	at org.apache.zookeeper.server.quorum.QuorumCnxManager.connectOne(QuorumCnxManager.java:368)
	at org.apache.zookeeper.server.quorum.QuorumCnxManager.connectAll(QuorumCnxManager.java:402)
	at org.apache.zookeeper.server.quorum.FastLeaderElection.lookForLeader(FastLeaderElection.java:840)
	at org.apache.zookeeper.server.quorum.QuorumPeer.run(QuorumPeer.java:762)
[2015-11-13 19:18:04,233] INFO Notification time out: 6400 (org.apache.zookeeper.server.quorum.FastLeaderElection)

由于zookeeper集群在启动的时候,每个结点都试图去连接集群中的其它结点,先启动的肯定连不上后面还没启动的,所以上面日志前面部分的异常是可以忽略的。通过后面部分可以看到,集群在选出一个Leader后,最后稳定了。

其他节点也可能会出现类似的情况,属于正常。

9.zookeeper服务检查

[root@kafka1~]#  netstat -nlpt | grep -E "2181|2888|3888"
tcp        0      0 192.168.2.24:3888           0.0.0.0:*                   LISTEN      1959/java            
tcp        0      0 0.0.0.0:2181                0.0.0.0:*                   LISTEN      1959/java                       
 
[root@kafka2 ~]#  netstat -nlpt | grep -E "2181|2888|3888"
tcp        0      0 192.168.2.23:3888           0.0.0.0:*                   LISTEN      1723/java    
tcp        0      0 0.0.0.0:2181                0.0.0.0:*                   LISTEN      1723/java           

[root@kafka3 ~]#  netstat -nlpt | grep -E "2181|2888|3888"
tcp        0      0 192.168.2.24:3888           0.0.0.0:*                   LISTEN      950/java            
tcp        0      0 0.0.0.0:2181                0.0.0.0:*                   LISTEN      950/java            
tcp        0      0 192.168.2.24:2888           0.0.0.0:*                   LISTEN      950/java            

#可以看出,如果哪台是Leader,那么它就拥有2888这个端口

ok.  这时候zookeeper集群已经启动起来了,下面启动kafka,也是依次按照顺序启动

[root@kafka1 ~]# nohup /usr/local/kafka/bin/kafka-server-start.sh /usr/local/kafka/config/server.properties &   #kafka启动的命令
[root@kafka1 ~]#  /usr/local/kafka/bin/kafka-server-stop.sh                                                         #kafka停止的命令

注意,跟zookeeper服务一样,如果kafka有问题 nohup的日志文件会非常大,把磁盘占满,这个kafka服务同样可以通过自己些服务脚本来管理服务的启动与关闭。

此时三台上面的zookeeper及kafka都已经启动完毕,来检测以下吧

(1)建立一个主题

[root@kafka1 ~]# /usr/local/kafka/bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 1 --topic summer
#注意:factor大小不能超过broker数

(2)查看有哪些主题已经创建

[root@kafka1 ~]# /usr/local/kafka/bin/kafka-topics.sh --list --zookeeper 192.168.2.22:2181   #列出集群中所有的topic
summer  #已经创建成功

(3)查看summer这个主题的详情

[root@kafka1 ~]# /usr/local/kafka/bin/kafka-topics.sh --describe --zookeeper 192.168.2.22:2181 --topic summer
Topic:summer	PartitionCount:1	ReplicationFactor:3	Configs:
	Topic: summer	Partition: 0	Leader: 2	Replicas: 2,4,3	Isr: 2,4,3

#主题名称:summer
#Partition:只有一个,从0开始
#leader :id为2的broker
#Replicas 副本存在于broker id为2,3,4的上面
#Isr:活跃状态的broker

(4)发送消息,这里使用的是生产者角色

[root@kafka1 ~]# /bin/bash /usr/local/kafka/bin/kafka-console-producer.sh --broker-list 192.168.2.22:9092 --topic summer
This is a messages
welcome to kafka

(5)接收消息,这里使用的是消费者角色

[root@kafka2 ~]# /usr/local/kafka/bin/kafka-console-consumer.sh --zookeeper  192.168.2.24:2181 --topic summer --from-beginning 
This is a messages
welcome to kafka

如果能够像上面一样能够接收到生产者发过来的消息,那说明基于kafka的zookeeper集群就成功啦。

10,下面我们将webserver1上面的logstash的输出改到kafka上面,将数据写入到kafka中

(1)修改webserver1上面的logstash配置,如下所示:各个参数可以到官网查询.

root@webserver1 etc]# cat logstash.conf 
input {             #这里的输入还是定义的是从日志文件输入
  file {
    type => "system-message" 
    path => "/var/log/messages"
    start_position => "beginning"
  }
}

output {
    #stdout { codec => rubydebug }   #这是标准输出到终端,可以用于调试看有没有输出,注意输出的方向可以有多个
    kafka {   #输出到kafka
      bootstrap_servers => "192.168.2.22:9092,192.168.2.23:9092,192.168.2.24:9092"   #他们就是生产者
      topic_id => "system-messages"  #这个将作为主题的名称,将会自动创建
      compression_type => "snappy"   #压缩类型
    }
}
[root@webserver1 etc]#

(2)配置检测

[root@webserver1 etc]# /usr/local/logstash/bin/logstash -f logstash.conf --configtest --verbose
Configuration OK
[root@webserver1 etc]#

(2)启动Logstash,这里我直接在命令行执行即可

[root@webserver1 etc]# /usr/local/logstash/bin/logstash -f logstash.conf

(3)验证数据是否写入到kafka,这里我们检查是否生成了一个叫system-messages的主题

[root@kafka1 ~]# /usr/local/kafka/bin/kafka-topics.sh --list --zookeeper 192.168.2.22:2181
summer
system-messages   #可以看到这个主题已经生成了

#再看看这个主题的详情:
[root@kafka1 ~]# /usr/local/kafka/bin/kafka-topics.sh --describe --zookeeper 192.168.2.22:2181 --topic system-messages
Topic:system-messages	PartitionCount:16	ReplicationFactor:1	Configs:
	Topic: system-messages	Partition: 0	Leader: 2	Replicas: 2	Isr: 2
	Topic: system-messages	Partition: 1	Leader: 3	Replicas: 3	Isr: 3
	Topic: system-messages	Partition: 2	Leader: 4	Replicas: 4	Isr: 4
	Topic: system-messages	Partition: 3	Leader: 2	Replicas: 2	Isr: 2
	Topic: system-messages	Partition: 4	Leader: 3	Replicas: 3	Isr: 3
	Topic: system-messages	Partition: 5	Leader: 4	Replicas: 4	Isr: 4
	Topic: system-messages	Partition: 6	Leader: 2	Replicas: 2	Isr: 2
	Topic: system-messages	Partition: 7	Leader: 3	Replicas: 3	Isr: 3
	Topic: system-messages	Partition: 8	Leader: 4	Replicas: 4	Isr: 4
	Topic: system-messages	Partition: 9	Leader: 2	Replicas: 2	Isr: 2
	Topic: system-messages	Partition: 10	Leader: 3	Replicas: 3	Isr: 3
	Topic: system-messages	Partition: 11	Leader: 4	Replicas: 4	Isr: 4
	Topic: system-messages	Partition: 12	Leader: 2	Replicas: 2	Isr: 2
	Topic: system-messages	Partition: 13	Leader: 3	Replicas: 3	Isr: 3
	Topic: system-messages	Partition: 14	Leader: 4	Replicas: 4	Isr: 4
	Topic: system-messages	Partition: 15	Leader: 2	Replicas: 2	Isr: 2
[root@kafka1 ~]#

可以看出,这个主题生成了16个分区,每个分区都有对应自己的Leader,但是我想要有10个分区,3个副本如何办?还是跟我们上面一样命令行来创建主题就行,当然对于logstash输出的我们也可以提前先定义主题,然后启动logstash 直接往定义好的主题写数据就行啦,命令如下:

[root@kafka1 ~]# /usr/local/kafka/bin/kafka-topics.sh --create --zookeeper 192.168.2.22:2181 --replication-factor 3 --partitions 10 --topic TOPIC_NAME

好了,我们将logstash收集到的数据写入到了kafka中了,在实验过程中我使用while脚本测试了如果不断的往kafka写数据的同时停掉两个节点,数据写入没有任何问题。

那如何将数据从kafka中读取然后给我们的es集群呢?那下面我们在kafka集群上安装Logstash,安装步骤不再赘述;三台上面的logstash 的配置如下,作用是将kafka集群的数据读取然后转交给es集群,这里为了测试我让他新建一个索引文件,注意这里的输入日志还是messages,主题名称还是“system-messages”

[root@kafka1 etc]# more logstash.conf 
input {
    kafka {
        zk_connect => "192.168.2.22:2181,192.168.2.23:2181,192.168.2.24:2181"   #消费者们
        topic_id => "system-messages"
        codec => plain
        reset_beginning => false
        consumer_threads => 5
        decorate_events => true
    }
}

output {
    elasticsearch {
      hosts => ["192.168.2.18:9200","192.168.2.19:9200"]
      index => "test-system-messages-%{+YYYY-MM}"           #为了区分之前实验,我这里新生成的所以名字为“test-system-messages-%{+YYYY-MM}”
  }
  }

在三台kafka上面启动Logstash,注意我这里是在命令行启动的;

[root@kafka1 etc]# pwd
/usr/local/logstash/etc
[root@kafka1 etc]# /usr/local/logstash/bin/logstash -f logstash.conf 
[root@kafka2 etc]# pwd
/usr/local/logstash/etc
[root@kafka2 etc]# /usr/local/logstash/bin/logstash -f logstash.conf 
[root@kafka3 etc]# pwd
/usr/local/logstash/etc
[root@kafka3 etc]# /usr/local/logstash/bin/logstash -f logstash.conf

在webserver1上写入测试内容,即webserver1上面利用message这个文件来测试,我先将其清空,然后启动

[root@webserver1 etc]# >/var/log/messages
[root@webserver1 etc]# echo "我将通过kafka集群达到es集群哦^0^" >> /var/log/messages
#启动logstash,让其读取messages中的内容

下图为我在客户端写入到kafka集群的同时也将其输入到终端,这里写入了三条内容

6

而下面三张图侧可以看出,三台Logstash 很平均的从kafka集群当中读取出来了日志内容

7

9

8

再来看看我们的es管理界面

10

ok ,看到了吧,

流程差不多就是下面 酱紫咯

111

由于篇幅较长,我将

4.Kibana部署;

5.Nginx负载均衡Kibana请求;

6.案例:nginx日志收集以及MySQL慢日志收集;

7.Kibana报表基本使用;

放到下一篇博客。

本文转自  陈小龙哈   51CTO博客,原文链接:http://blog.51cto.com/chenxiaolong/1971976
相关文章
|
3月前
|
存储 消息中间件 网络协议
日志平台-ELK实操系列(一)
日志平台-ELK实操系列(一)
|
5月前
|
消息中间件 存储 Kafka
Kafka日志处理:深入了解偏移量查找与切分文件
**摘要:** 本文介绍了如何在Kafka中查找偏移量为23的消息,涉及ConcurrentSkipListMap的查询、索引文件的二分查找及日志分段的物理位置搜索。还探讨了Kafka日志分段的切分策略,包括大小、时间、索引大小和偏移量达到特定阈值时的切分条件。理解这些对于优化Kafka的性能和管理日志至关重要。
208 2
|
2月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
49 4
|
2月前
|
存储 消息中间件 大数据
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
51 1
|
2月前
|
存储 消息中间件 大数据
大数据-68 Kafka 高级特性 物理存储 日志存储概述
大数据-68 Kafka 高级特性 物理存储 日志存储概述
33 1
|
3月前
|
消息中间件 Kafka API
python之kafka日志
python之kafka日志
37 3
|
3月前
|
消息中间件 存储 监控
Kafka的logs目录下的文件都是什么日志?
Kafka的logs目录下的文件都是什么日志?
207 11
|
4月前
|
消息中间件 监控 Kafka
Filebeat+Kafka+Logstash+Elasticsearch+Kibana 构建日志分析系统
【8月更文挑战第13天】Filebeat+Kafka+Logstash+Elasticsearch+Kibana 构建日志分析系统
243 3
|
4月前
|
消息中间件 Java Kafka
【Azure 事件中心】开启 Apache Flink 制造者 Producer 示例代码中的日志输出 (连接 Azure Event Hub Kafka 终结点)
【Azure 事件中心】开启 Apache Flink 制造者 Producer 示例代码中的日志输出 (连接 Azure Event Hub Kafka 终结点)
|
4月前
|
消息中间件 Kafka
一文吃透企业级elk技术栈:4. kafka 集群部署
一文吃透企业级elk技术栈:4. kafka 集群部署