MySQL 到 Kafka 实时数据同步实操分享(1),字节面试官职级

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: MySQL 到 Kafka 实时数据同步实操分享(1),字节面试官职级

正文

第一步:配置MySQL 连接


1.点击 Tapdata Cloud 操作后台左侧菜单栏的【连接管理】,然后点击右侧区域【连接列表】右上角的【创建连接】按钮,打开连接类型选择页面,然后选择MySQL

2.在打开的连接信息配置页面依次输入需要的配置信息

【连 接 名 称】:设置连接的名称,多个连接的名称不能重复

【数据库地址】:数据库 IP / Host

【端 口】:数据库端口

【数据库名称】:tapdata 数据库连接是以一个 db 为一个数据源。这里的 db 是指一个数据库实例中的 database,而不是一个 mysql 实例。

【账 号】:可以访问数据库的账号

【密 码】:数据库账号对应的密码

【时 间 时 区】:默认使用该数据库的时区;若指定时区,则使用指定后的时区设置

3.测试连接,提示测试通过

4.测试通过后保存连接即可。

第二步:配置 Kafka 连接


1.同第一步操作,点击左侧菜单栏的【连接管理】,然后点击右侧区域【连接列表】右上角的【创建连接】按钮,打开连接类型选择页面,然后选择 Kafka

2.在打开的连接信息配置页面依次输入需要的配置信息,配置完成后测试连接保存即可。

第三步:选择同步模式-全量/增量/全+增


进入Tapdata Cloud 操作后台任务管理页面,点击添加任务按钮进入任务设置流程

根据刚才建好的连接,选定源端与目标端。

根据数据需求,选择需要同步的库、表,如果你对表名有修改需要,可以通过页面中的表名批量修改功能对目标端的表名进行批量设置

在以上选项设置完毕后,下一步选择同步类型,平台提供全量同步、增量同步、全量+增量同步,设定写入模式和读取数量。

如果选择的是全量+增量同步,在全量任务执行完毕后,Tapdata Agent 会自动进入增量同步状态。在该状态中,Tapdata Agent 会持续监听源端的数据变化(包括:写入、更新、删除),并实时的将这些数据变化写入目标端。

点击任务名称可以打开任务详情页面,可以查看任务详细信息。

点击任务监控可以打开任务执行详情页面,可以查看任务进度/里程碑等的具体信息。

第四步:进行数据校验


一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。


相关文章
|
3月前
|
SQL DataWorks 关系型数据库
DataWorks操作报错合集之如何处理数据同步时(mysql->hive)报:Render instance failed
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
27天前
|
监控 关系型数据库 MySQL
深入了解MySQL主从复制:构建高效稳定的数据同步架构
深入了解MySQL主从复制:构建高效稳定的数据同步架构
86 1
|
21天前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
92 0
|
2月前
|
canal 消息中间件 关系型数据库
Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
【9月更文挑战第1天】Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
479 4
|
3月前
|
关系型数据库 MySQL 数据库
【MySQL】手把手教你MySQL数据同步
【MySQL】手把手教你MySQL数据同步
|
14天前
|
Arthas Kubernetes Java
字节面试:CPU被打满了,CPU100%,如何处理?
尼恩,一位拥有20多年经验的老架构师,针对近期读者在一线互联网企业面试中遇到的CPU 100%和红包架构等问题,进行了系统化梳理。文章详细解析了CPU 100%的三大类型问题(业务类、并发类、内存类)及其九种常见场景,提供了使用jstack和arthas两大工具定位问题的具体步骤,并分享了解决死锁问题的实战案例。尼恩还强调了面试时应先考虑回滚版本,再使用工具定位问题的重要性。此外,尼恩提供了丰富的技术资料,如《尼恩Java面试宝典》等,帮助读者提升技术水平,轻松应对面试挑战。
字节面试:CPU被打满了,CPU100%,如何处理?
|
19天前
|
Java API 对象存储
JVM进阶调优系列(2)字节面试:JVM内存区域怎么划分,分别有什么用?
本文详细解析了JVM类加载过程的关键步骤,包括加载验证、准备、解析和初始化等阶段,并介绍了元数据区、程序计数器、虚拟机栈、堆内存及本地方法栈的作用。通过本文,读者可以深入了解JVM的工作原理,理解类加载器的类型及其机制,并掌握类加载过程中各阶段的具体操作。
|
13天前
|
消息中间件 NoSQL 关系型数据库
一文彻底搞定Redis与MySQL的数据同步
【10月更文挑战第21天】本文介绍了 Redis 与 MySQL 数据同步的原因及实现方式。同步的主要目的是为了优化性能和保持数据一致性。实现方式包括基于数据库触发器、应用层双写和使用消息队列。每种方式都有其优缺点,需根据具体场景选择合适的方法。此外,文章还强调了数据同步时需要注意的数据一致性、性能优化和异常处理等问题。
123 0
|
15天前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
|
23天前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
33 1