【Azure 事件中心】Kafka 生产者发送消息失败,根据失败消息询问机器人得到的分析步骤

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【Azure 事件中心】Kafka 生产者发送消息失败,根据失败消息询问机器人得到的分析步骤

问题描述

Azure Event Hubs -- Kafka 生产者发送消息存在延迟接收和丢失问题, 在客户端的日志中发现如下异常:

2023-06-05 02:00:20.467 [kafka-producer-thread | producer-1] ERROR com.deloitte.common.kafka.CommonKafkaProducer - messageId:9235f334-e39f-b429-227e-45cd30dd6486, topic:notify_topic
发送消息失败 org.springframework.kafka.core.KafkaProducerException: Failed to send; nested exception is org.apache.kafka.common.errors.TimeoutException: The request timed out.
at org.springframework.kafka.core.KafkaTemplate.lambda$buildCallback$6(KafkaTemplate.java:690) 
at org.apache.skywalking.apm.plugin.kafka.CallbackAdapter.onCompletion(CallbackAdapter.java:45) 
at org.springframework.kafka.core.DefaultKafkaProducerFactory$CloseSafeProducer$1.onCompletion$original$dElInXX8(DefaultKafkaProducerFactory.java:1001) 
at org.springframework.kafka.core.DefaultKafkaProducerFactory$CloseSafeProducer$1.onCompletion$original$dElInXX8$accessor$6jLL1TNr(DefaultKafkaProducerFactory.java) 
at org.springframework.kafka.core.DefaultKafkaProducerFactory$CloseSafeProducer$1$auxiliary$ldSQQGBZ.call(Unknown Source) 
at org.apache.skywalking.apm.agent.core.plugin.interceptor.enhance.InstMethodsInter.intercept(InstMethodsInter.java:86) 
at org.springframework.kafka.core.DefaultKafkaProducerFactory$CloseSafeProducer$1.onCompletion(DefaultKafkaProducerFactory.java) 
at org.apache.kafka.clients.producer.KafkaProducer$InterceptorCallback.onCompletion$original$PwZecSoL(KafkaProducer.java:1350) 
at org.apache.kafka.clients.producer.KafkaProducer$InterceptorCallback.onCompletion$original$PwZecSoL$accessor$5Ux1udg0(KafkaProducer.java) 
at org.apache.kafka.clients.producer.KafkaProducer$InterceptorCallback$auxiliary$a5oVYNi3.call(Unknown Source) 
at org.apache.skywalking.apm.agent.core.plugin.interceptor.enhance.InstMethodsInter.intercept(InstMethodsInter.java:86) 
at org.apache.kafka.clients.producer.KafkaProducer$InterceptorCallback.onCompletion(KafkaProducer.java) 
at org.apache.kafka.clients.producer.internals.ProducerBatch.completeFutureAndFireCallbacks(ProducerBatch.java:273) 
at org.apache.kafka.clients.producer.internals.ProducerBatch.done(ProducerBatch.java:234) 
at org.apache.kafka.clients.producer.internals.ProducerBatch.completeExceptionally(ProducerBatch.java:198) 
at org.apache.kafka.clients.producer.internals.Sender.failBatch(Sender.java:758) 
at org.apache.kafka.clients.producer.internals.Sender.failBatch(Sender.java:743) 
at org.apache.kafka.clients.producer.internals.Sender.failBatch(Sender.java:695) 
at org.apache.kafka.clients.producer.internals.Sender.completeBatch(Sender.java:634) 
at org.apache.kafka.clients.producer.internals.Sender.lambda$null$1(Sender.java:575) 
at java.base/java.util.ArrayList.forEach(ArrayList.java:1541) 
at org.apache.kafka.clients.producer.internals.Sender.lambda$handleProduceResponse$2(Sender.java:562) 
at java.base/java.lang.Iterable.forEach(Iterable.java:75) 
at org.apache.kafka.clients.producer.internals.Sender.handleProduceResponse(Sender.java:562) 
at org.apache.kafka.clients.producer.internals.Sender.lambda$sendProduceRequest$5(Sender.java:836) 
at org.apache.kafka.clients.ClientResponse.onComplete(ClientResponse.java:109) 
at org.apache.kafka.clients.NetworkClient.completeResponses(NetworkClient.java:574) 
at org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:566) 
at org.apache.kafka.clients.producer.internals.Sender.runOnce(Sender.java:328) 
at org.apache.kafka.clients.producer.internals.Sender.run(Sender.java:243) 
at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: org.apache.kafka.common.errors.TimeoutException: The request timed out.

 

当发送端收到 Failed to send; nested exception is org.apache.kafka.common.errors.TimeoutException: The request timed out. 日志后, 如何来分析这个问题呢?

问题回答

机器人回答一:

This error message indicates that the Kafka producer failed to send a message due to a timeout.

One possible reason for this error is that the transaction timeout is larger than the maximum value allowed by the broker.

You can check the broker configuration for `transaction.max.timeout.ms` and make sure that it is set to a value that is larger than the transaction timeout used by the producer.

You can also check the Kafka logs for more information about the error.

If you are using Flink, you can refer to the Hilo documentation on [Flink to HDInsightKafkaTransactionTimeoutIssue](https://supportability.visualstudio.com/870b0c89-5235-4a33-a0c6-44be26e284e7/_wiki/wikis/e9f84cb2-cd1b-4143-ac21-5bc63f3bdba0?pagePath=%2FHilo%2F[Hilo] TSGs%2F[Hilo] Flink TSGs%2F[Hilo] Flink to HDInsightKafkaTransactionTimeoutIssue) for more information on this issue. One or more links in the message.

 

机器人回答二:

The error message you provided indicates that the request timed out. This could be due to a network issue or a configuration issue. You can check the following: 1. Check the network connection between the producer and the Event Hub service. Make sure that the network is stable and that there are no issues with the firewall or network security groups. 2. Check the Kafka producer configuration. Make sure that the `request.timeout.ms` property is set to a value that is appropriate for your use case. You can also try increasing the value of this property to see if it resolves the issue. 3. Check the size of the message being sent. If the message size is greater than the maximum allowed size, the request may time out. You can check the maximum message size allowed by the Event Hub service and make sure that your message size is within the limit. 4. Check the Kafka logs for more information about the error. The logs may provide more details about the cause of the error. If you are still unable to resolve the issue, you can contact Azure support for further assistance. Message is interactive. Click to interact.

If you are not using Flink and are using the Kafka producer method to send messages to Event Hub, you can check the Kafka logs for more information about the error.

The error message you provided indicates that the request timed out. This could be due to a network issue or a configuration issue. You can check the following:

1. Check the network connection between the producer and the Event Hub service. Make sure that the network is stable and that there are no issues with the firewall or network security groups.

2. Check the Kafka producer configuration. Make sure that the `request.timeout.ms` property is set to a value that is appropriate for your use case. You can also try increasing the value of this property to see if it resolves the issue.

3. Check the size of the message being sent. If the message size is greater than the maximum allowed size, the request may time out. You can check the maximum message size allowed by the Event Hub service and make sure that your message size is within the limit.

4. Check the Kafka logs for more information about the error. The logs may provide more details about the cause of the error.

If you are still unable to resolve the issue, you can contact Azure support for further assistance.

 

相关文章
|
16天前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
48 2
|
1月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
32 4
|
1月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
29 2
|
1月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
50 1
|
1月前
|
消息中间件 SQL 分布式计算
大数据-76 Kafka 高级特性 稳定性-消费重复 生产者、Broker、消费者 导致的重复消费问题
大数据-76 Kafka 高级特性 稳定性-消费重复 生产者、Broker、消费者 导致的重复消费问题
32 1
|
2月前
|
消息中间件 Kafka
消费kafka不需要设置 压缩协议吗 假如生产者压缩协议是lz4
消费kafka不需要设置 压缩协议吗 假如生产者压缩协议是lz4
|
1月前
|
消息中间件 druid Kafka
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
70 0
|
2月前
|
数据采集 消息中间件 存储
实时数据处理的终极武器:Databricks与Confluent联手打造数据采集与分析的全新篇章!
【9月更文挑战第3天】本文介绍如何结合Databricks与Confluent实现高效实时数据处理。Databricks基于Apache Spark提供简便的大数据处理方式,Confluent则以Kafka为核心,助力实时数据传输。文章详细阐述了利用Kafka进行数据采集,通过Delta Lake存储并导入数据,最终在Databricks上完成数据分析的全流程,展示了一套完整的实时数据处理方案。
67 3
|
5天前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
29 9
|
1天前
|
机器人 人机交互 语音技术
智能电销机器人源码部署安装好后怎么运行
销售打电销,其中90%电销都是无效的,都是不接,不要等被浪费了这些的精力,都属于忙于筛选意向客户,大量的人工时间都耗费在此了。那么,有这种新型的科技产品,能为你替代这些基本的工作,能为你提升10倍的电销效果。人们都在关心智能语音客服机器人如何高效率工作的问题,今天就为大家简单的介绍下:1、智能筛选系统:电销机器人目前已经达到一个真人式的专家级的销售沟通水平,可以跟客户沟通,筛选意向,记录语音和文字通话记录,快速帮助电销企业筛选意向客户,大大的节约了筛选时间成本和人工成本。2、高速运转:在工作效率上,人工电销员,肯定跟不上智能语音机器人,机器人自动拨出电话,跟客户交谈。电话机
5 0