实时计算 Flink版操作报错合集之写入 Kafka 报错 "Failed to send data to Kafka: Failed to allocate memory within the configured max blocking time 60000 ms",该怎么解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

问题一:Flinkk写入kafka报错,怎么处理?


Flinkk写入kafka报错,怎么处理? Failed to send data to Kafka: Failed to allocate memory within the configured max blocking time 60000 ms.

参数如下

request.timeout.ms=700000

batch.size=10

linger.ms=50

connections.max.idle.ms=700000

linger.ms=100

max.request.size=1048576

retries=5

timeout.ms=600000

topic查看详情是正常的,在控制台可以生产和消费


参考回答:

针对 Flink 写入 Kafka 时报错的问题,建议您按照如下建议排查:

  • 请求超时参数 request.timeout.ms 限制了 Flink 向 Kafka 写入消息的时间。如果请求超时,则 Flink 会停止发送消息并抛出异常。请您适当延长该参数值,以降低数据丢失的风险;
  • 若出现内存分配失败,请确保 Kafka 客户端有足够的内存来保存消息;
  • 在生产者配置中设置适当的 batch.size 参数,确保数据批量大小适中;
  • 尝试调整 connections.max.idle.ms 参数,防止客户端断开连接导致消息延迟;
  • 运行期间监控 Kafka 生产者的统计信息,并及时发现问题。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566109


问题二:FLink 1.13版本升级Flink 1.17 报错 ,怎么处理?


FLink 1.13版本升级Flink 1.17 报错 ,怎么处理?RpcLoaderException: could not load RpcSystem

和这个问题差不多 https://www.saoniuhuo.com/question/detail-2743444.html

flink-rpc-core

flink-streaming-java

flink-clients

这些包 以及其他包多有引入 本地运行报错这个RpcLoaderException: could not load RpcSystem


参考回答:

确包

org.apache.flink

flink-rpc-akka

1.17.1

org.apache.flink

flink-rpc-akka-loader

1.17.1


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566108


问题三:在Flink中checkpoint产生的文件名太长报错,各位大佬有遇到的吗?


代码实现mongo数据整库写hudi,采用RocksDBStateBackend状态后端,在Flink中checkpoint产生的文件名太长报错,各位大佬有遇到的吗?


参考回答:

调整一下rocksdbjni包的版本


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566107


问题四:flink源码编译的时候报错如下,有哪位老师遇到吗?怎么解决 ?


flink源码编译的时候报错如下,有哪位老师遇到吗?怎么解决


参考回答:

如果用的是jdk8的话,可以试下用版本高一点的jdk。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566100


问题五:flink on k8s这么添加依赖到基础镜像中运行的时候报这个错的啊?


flink on k8s这么添加依赖到基础镜像中运行的时候报这个错的啊?


参考回答:

如果jar包有的话,确认下jar包权限


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566094

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
1月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
198 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
1月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
|
3月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
357 0
|
10天前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
4月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
453 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
4月前
|
消息中间件 Kafka 流计算
docker环境安装kafka/Flink/clickhouse镜像
通过上述步骤和示例,您可以系统地了解如何使用Docker Compose安装和配置Kafka、Flink和ClickHouse,并进行基本的验证操作。希望这些内容对您的学习和工作有所帮助。
393 28
|
5月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
373 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
6月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
5月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
8月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
299 1

相关产品

  • 实时计算 Flink版