仅售99美元:英伟达GTC上发布「最小 AI 计算机」,学生福利已来

简介: 虽然在图像计算市场上独占鳌头,并引领了最近一次深度学习浪潮,但英伟达仍在不断寻求开拓新领域。在刚刚结束的 GTC 2019 大会上,这家公司推出了 RTX Server、Data Science Server、Jetson Nano 等全新计算设备,以及大量软件工具,试图把自己的业务扩展到数据科学和超小型 IoT 设备等方面。

这已是英伟达举办的第十届 GTC,只可惜今天还是没有人们期待已久的「安培」架构 7 纳米制程显卡。


「像所有大会的 Keynote 一样,我得为今天的 GTC 演讲搞出一个简称。今天的世界是——Prada!」黄仁勋以这样的开场白介绍道。名为 Prada 并不意味着英伟达的显卡变成了奢侈品。它的意思是:


programmable

acceleration

domain

architecture


——可编程加速领域架构


0A183FD2-8D75-4D84-A0F8-C00C4CE9656D.jpeg

与 Prada 相反的是,使用英伟达芯片还可以让你更省钱。


作为 GTC 2019 系列的起始,本次英伟达还是发布了大量重要新产品。


CUDA-X:GPU 加速的计算库


7652D558-DB3F-4792-A391-B9ABCF93F021.jpeg


会上,黄仁勋发布全新的 GPU 加速的计算库 CUDA-X,该计算库捆绑了英伟达所有的库,解锁了 Tensor Core GPU 的所有灵活性,可以加速:


  • 数据科学,从数据摄取到 ETL,再到模型训练和部署
  • 用于回归、分类和聚类的机器学习算法
  • 所有机器学习训练框架,此次发布之后,还可以自动优化英伟达 Tensor Core GPU
  • 推理和大规模 Kubernete 在云端的部署
  • 个人电脑、工作站、超级计算机云和企业数据中心上的数据科学
  • 亚马逊云服务、谷歌云和微软 Azure AI 服务商的数据科学


CUDA-X 加速了数据科学。英伟达今天在 GTC 上介绍的 CUDA-X AI 是用于数据科学加速的唯一端到端平台。


随着企业转向人工智能(深度学习、机器学习和数据分析),为了使数据更有用,CUDA-X AI 应运而生。所有这些任务的典型工作流程都是:数据处理、特征确定、训练、验证和部署。CUDA-X AI 释放了英伟达 Tensor Core GPU 的灵活性,以独特的方式解决这种端到端人工智能工作流程。


CUDA-X AI 能够将机器学习和数据科学工作负载加快 50 倍,包含十几个专门的加速库。它已经在用 cuDF 加速数据分析,用 cuDNN 加速深度学习基元;用 cuML 加速机器学习算法;用 DALI 加速数据处理等。


总之,这些库加速了典型 AI 工作流程的每一步,无论是用深度学习来训练语音识别和图像识别系统还是用数据分析来评估按揭风险。这些工作流程中的每一步都需要处理大量数据,每一步都受益于 GPU 加速计算。


31FC353E-ECC8-41CC-AC61-796D5A0B95DC.jpeg


鼓励创新的软件工具


在现场,英伟达还发布了 Clara AI Toolkit,这是一个开放的、可延展的计算平台,让开发者能够在混合的计算环境(嵌入、预置或者云)中建立、部署医疗图像应用,从而创造智能仪器和自动化的医疗工作流。为了帮助各领域的 AI 研发,Clara 中已有很多预训练模型,来自各行业的开发者可以直接使用这些模型,并将其转化为自己的专有工具。很多医疗机构现在已经在使用 Clara 了。


今天已有 100 万建筑师、300 万设计师、300 万 3D 设计师,200 万机械设计师在使用 RTX 技术开发产品了。很多专业软件也已开始支持 RTX 技术。其中包括 Adobe、Autodesk 等等。英伟达表示,已有 80% 的业界公司支持 RTX 技术。


制作 3D 动画是一项复杂的过程,当前全球已有 200 余家动画制作工作室,它们各自都在使用自身的软件和工作形态。英伟达希望能够通过一种统一的平台让各家工作室协同合作,从而提升效率,这就是 NVIDIA Omniverse。在 GTC 上,黄仁勋展示了未来 3D 动画开发的新流程:Autodesk Maya、虚幻引擎、SUBSTANCE 等不同软件,不同地区的工作室都可以在 Omniverse 上开发模型,所有进度都是互相即时可见的。


A03A0802-4226-45FC-8EEF-56FCA69D11C8.jpeg

「Omniverse 可以让全世界的 3D 设计工作室联合起来。」黄仁勋表示。


一部分设计者调整模型,一部分设计场景,一部分修改颜色和贴图,所有工作都可以同时进行,大大提升了工作效率。「这就是 3D 图像领域的谷歌文档。」黄仁勋表示。


面向 5G 的云服务器


既然是 GTC 大会,就必然会推出新硬件。随着低延迟无线通信网络 5G 的临近,很多软硬件厂商一直推崇的「云串流游戏」业务也正逐渐变得现实起来。英伟达很早就已推出自己的云游戏计划:「GeForce Now」,不过由于延迟和带宽的问题,目前游戏的体验还没有达到想象中的完美程度。


「GeForce Now 现在已经有 30 万玩家、500 多款游戏了。」黄仁勋介绍道。「它并不是游戏届的 Netflix,而是在云端进行图像计算,实时将画面传送到本地进行的。」如果这个设想不久以后真正流行开来,没有强大 GPU 显卡的玩家就也能随时随地玩到最高画质的游戏了。在云端计算的游戏 stream 到本地,就像看视频一样,即使是在手机上我们也可以获得最强的图像体验。


为了满足全球各地玩家的需求,英伟达已经设立了 15 个数据中心提供算力。但对于云游戏服务来说这还远远不够,英伟达提出了 Geforce Now Alliance,邀请更多公司提供自己的算力,加入支持 GeForce now 的行列,首期加入的有 Softbank 和 LG U+。


有了合作伙伴,如何保证服务器的工作效率?英伟达还推出了 RTX Server 来保证算力。


93ECAA1A-6B34-4B5C-8185-A23A4D93035C.jpeg


这是一种性能强大的服务器设计,在 8U 的空间里可以容纳 40 块 Turing 架构的 GPU(GeForce RTX 2080),而整个服务器系统可以整合 32 套 RTX Server,在 10 个机架的空间内提供多达 1280 块 GPU 的算力,服务器之间使用 Mellanox 的技术实现高速连接。一个 RTX Server 系统可以供应多达 1 万名玩家同时进行游戏。


英伟达表示,8U 的 RTX Server 将会在今年的第三季度出货。


3375F192-48C2-4E3A-83E3-5C5118D45CA4.jpeg

黄仁勋:买的越多,省的越多?现在错了,使用 RTX Server,五年之后你省下的电费相当于这是一台免费的服务器!


「数据科学是目前发展最快的科学。」黄仁勋表示,英伟达这次在「超级计算」和「Hyper Scale」之间找到了新的产业痛点「数据科学」。这是一个对于并联计算效率要求很高,同时业需求大量算力的领域。新推出的 RTX Server 和此前提出的 DGX-2 正好符合这一领域的需求。


最小 AI 计算机:Jetson Nano


一届 GTC 上没有芯片是无法想象的,这一次英伟达发布的产品是历届大会上最小的,正如其名:Jetson Nano。


171991EC-A1E9-445F-AF2A-5D1DAB528899.jpeg


在今天的 GTC 大会上,黄仁勋发布了两版 Jetson Nano:面向开发者、爱好者的 99 美元开发包;以及面向公司的 129 美元的产品模块。英伟达 Jetson 家族又有了新成员,如今包括面向自动驾驶的 Jetson AGX Xavier、面向边缘 AI 的 Jetson TX2。


1DC9D575-A39F-44DC-ABF2-8375CABFB7AA.jpeg

Jetson Nano 及其开发板。


据黄仁勋介绍,Jetson Nano 是一个能够创建数百万智能系统的人工智能计算机。这款小型但强大的 CUDA-X AI 计算机为运行现代 AI 工作流程提供了 472 千兆位的计算性能。它非常节能,功耗低至 5 瓦特。Jetson Nano 开发板包含一块 4 核 A57CPU、128 核 Maxwell 架构 GPU 以及 4G 内存。看起来是比树莓派 3 性能强一个等级的存在。


Jetson Nano 支持高清传感器,可以并行处理许多传感器并在每个传感器流上运行多个现有的神经网络。它还支持许多流行的人工智能框架,使得开发人员可以轻松地将他们喜欢的模型和框架集成到产品中。该开发包可以开箱即用地运行 Linux,拥有 4GB 内存和相机及其他附件所需的 I/O。


9B707F7A-466B-4471-864E-F4EB2C7D6F6B.jpeg

Jetson Nano 开发者工具包技术规格


据英伟达博客介绍,Jetson Nano 可以运行大量网络,包括 TensorFlow、PyTorch、Caffe/Caffe2、Keras、MXNet 这些流行的机器学习框架的完整本地版本。通过实现图像识别、目标检测与定位、人体姿态估计、语义分割、视频增强和智能分析等能力,这些网络可被用于构建自动驾驶机器和复杂的 AI 系统。


下图展示了在各种流行模型的推理基准结果。Jetson Nano 在许多场景中实现了实时表现,能够处理多种高清晰视频流。


24CB9E08-9781-4A82-B8BF-978AE3CE62D0.jpeg

各种深度学习推理网络在 Jetson Nano 和 TensorRT 下的表现,使用了 FP16 精度,batch size 为 1。


此外,英伟达还将 Jetson Nano 与树莓派、英特尔的计算棒以及谷歌的 Edge TPU 开发版进行了对比,部分结果如下。


C0F199C7-0DA5-4421-9D7C-6A494AA7F6AC.jpeg

Jetson Nano 与树莓派、英特尔的计算棒以及谷歌的 Edge TPU 开发版的推理表现结果对比


更自由的自动驾驶


除了开发板,英伟达芯片也已渗入各行各业的机器人领域,为人工智能算法提供端侧算力支持,不过最耗费算力的当属自动驾驶。「最重要的机器人就是自动驾驶汽车了。」黄仁勋表示。


目前,英伟达已经开放了覆盖整个自动驾驶流程的开发工具。很多车厂、自动驾驶科技公司、高精地图和传感器厂商已经加入了这个生态系统。


在现场,英伟达展示了最新的自动驾驶汽车演示录像,黄仁勋表示,去年的英伟达自动驾驶汽车是在闭环路线行动的,今天的自动驾驶汽车已经可以自生成动态地图并自动行驶了。「即使是地图上没有标注的支线道路,我们的自动驾驶汽车也可以通过 Lidar、雷达、摄像头等传感器自动生成高精度地图并安全行驶在其上。」黄仁勋表示。


在英伟达的愿景中,道路规划+预测+强制安全区域的逻辑可以在自动驾驶过程中预测未来道路上发生的各类情况,从而保证安全的自动驾驶。当然,这些算法很快将会开源。


在 GTC 上,英伟达发布了自动驾驶模拟器 Drive Constellation,这是一种复杂的虚拟场景,可供开发者们在更为真实的场景下训练自动驾驶 AI 模型。开发者在其中可以随意控制天气,道路交通情况,并可以随意切换控制车辆。这种方式相比于现实世界更为高效、成本效益更高也更为安全。


CDA82E35-9664-415E-B1F9-0E11675E3FEC.jpeg

英伟达 Drive Constellation


去年的 GTC 首次介绍了 Drive Constellation,该数据中心解决方案包含两个并排服务器:DRIVE Constellation Simulator 使用运行 DRIVE Sim 软件的英伟达 GPU 生成虚拟世界中汽车的传感器输出;DRIVE Constellation Vehicle 包含 DRIVE AGX Pegasus AI 汽车计算机,用来处理模拟传感器数据。


英伟达表示,这种模拟器不仅可以帮助自动驾驶开发者,也将成为第三方监管机制的重要组成部分。在大会上,黄仁勋还公布了英伟达的第一个合作伙伴:目前世界排名第一的车厂丰田。


从英伟达 2018 年四季度的财报上来看,其 RTX20 系列显卡带来的收益并不理想。虽然 AMD 早在今年 1 月就推出了自己的 7 纳米制程 CPU 与 GPU,但英伟达似乎并没有感到紧迫的压力。目前,英伟达希望开拓新的市场,让更多行业用上最先进的人工智能技术。26663245-B7A8-441B-BE8B-F980CA4F8F41.png



本文为机器之心原创,转载请联系本公众号获得授权

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
6月前
|
人工智能 运维 安全
英伟达发布AI Enterprise 5.0,帮助企业加速生成式AI开发
英伟达发布AI Enterprise 5.0,这是一个云端原生平台,加速生成式AI的开发与部署。该平台提供优化的数据科学流程,支持生成式AI,强调性能、安全性和灵活性。核心特性包括NVIDIA NIM和CUDA-X微服务的性能优化,严格的安全监测,多环境运行能力,及企业级支持与服务。API目录提供多种预训练模型,促进跨领域的应用创新。然而,平台可能对小企业有高技术门槛和成本挑战,且可能存在与现有系统兼容性问题。
138 1
英伟达发布AI Enterprise 5.0,帮助企业加速生成式AI开发
|
6月前
|
人工智能 自然语言处理 数据处理
英伟达推出NeMo,极大简化自定义生成式AI开发
【2月更文挑战第30天】英伟达发布NeMo平台,简化生成式AI模型开发,加速AIGC进程。平台提供NeMo Curator、Customizer和Evaluator微服务,覆盖数据准备至模型评估全周期。Curator加速数据处理,Customizer支持模型微调,Evaluator全面评估模型性能。虽有学习曲线挑战,但NeMo为AI创新与应用带来更多可能性。
126 2
英伟达推出NeMo,极大简化自定义生成式AI开发
|
24天前
|
人工智能 安全 搜索推荐
北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞
【10月更文挑战第17天】北京大学计算机学院张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可能导致误诊和医疗事故,引起学术界和工业界的广泛关注。研究强调了医疗AI系统安全性评估的重要性。
39 1
|
26天前
|
人工智能 安全 搜索推荐
北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞
【10月更文挑战第16天】北京大学张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可使攻击者通过特定数据样本误导AI诊断,引发误诊风险。此发现引起广泛关注,强调了医疗AI安全评估的重要性。
51 4
|
2月前
|
人工智能 数据中心 芯片
【通义】AI视界|英特尔推出新一代AI芯片挑战英伟达
今日科技热点包括:OpenAI CTO 米亚·穆拉蒂宣布离职,Meta发布多功能Llama 3.2语言模型,扎克伯格因Meta的人工智能策略使个人资产突破2000亿美元,星纪魅族展示AI生态新品如Lucky 08 AI手机及智能穿戴设备,以及英特尔发布Xeon 6 CPU和Gaudi 3 AI加速器挑战英伟达市场地位。这些动态展现了人工智能领域快速发展的趋势及其对科技巨头的影响。
|
2月前
|
人工智能 自然语言处理 自动驾驶
【通义】AI视界|马斯克亲自辟谣:xAI不可能在特斯拉的推理计算机上运行
本文精选了24小时内的重要科技新闻,包括马斯克辟谣xAI不会运行在特斯拉计算机上、谷歌发布AlphaProteo AI模型、百度贴吧“弱智吧”成为AI训练佳选、荣耀推出跨应用智能体以及苹果即将在iOS 18.2中加入图像生成功能。更多内容请访问通义官网体验。
|
4月前
|
存储 机器学习/深度学习 人工智能
未来已来:AI技术的最新趋势与前沿探索
【7月更文第20天】在这个日新月异的时代,人工智能(AI)已经从科幻概念逐渐深入到我们日常生活的方方面面,其发展速度之快超乎想象。从基础的语音识别、图像分析到复杂的决策制定、自动驾驶,AI技术正以前所未有的力量推动着社会进步。本文将带您一同展望AI技术的未来发展方向,深入探讨量子计算、生物计算等新兴领域的前沿探索,以及它们如何重新定义AI的边界。
237 0
|
4月前
|
人工智能 领域建模
应用工程化架构问题之AI计算机中的大模型评估体系发生变化如何解决
应用工程化架构问题之AI计算机中的大模型评估体系发生变化如何解决
|
5月前
|
机器学习/深度学习 人工智能 算法
公司即将在AI上浪费数十亿美元,如何避免成为其中之一
公司即将在AI上浪费数十亿美元,如何避免成为其中之一
|
6月前
|
存储 人工智能 数据处理
英伟达AI Workbench正式发布,大幅度简化大模型开发流程
英伟达发布AI Workbench,革新大模型开发流程,简化GPU工作站配置,降低AI技术门槛。该工具提供预建AI项目、交互式文档功能及自定义图像生成,支持LLM定制,助力高效开发与协作。虽对新手有一定学习曲线,但已成AI民主化重要一步。
128 4
英伟达AI Workbench正式发布,大幅度简化大模型开发流程

热门文章

最新文章