Fireworks AI和MongoDB:依托您的数据,借助优质模型,助力您开发高速AI应用

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
简介: 我们欣然宣布MongoDB与 Fireworks AI 正携手合作让客户能够利用生成式人工智能 (AI)更快速、更高效、更安全地开展创新活动

我们欣然宣布MongoDB与 Fireworks AI 正携手合作让客户能够利用生成式人工智能 (AI)更快速、更高效、更安全地开展创新活动

image.png

Fireworks AI由 Meta旗下 PyTorch团队的行业资深人士于 2022 年底创立,他们在团队中主要负责优化性能、提升开发者体验以及大规模运行 AI 应用。

Fireworks AI 将这些专业知识运用于自己的生产 AI 平台,从而整理并优化了业界优质的开放模型。该公司进行了基准测试,结果表明,在 Fireworks AI 上运行的生成式 AI 模型的推断速度比其他同类平台快 4 倍,吞吐量和规模高出多达 8 倍。

模型属于应用程序堆栈的一部分。然而,开发者要想发挥生成式人工智能的力量,还需要将企业数据引入这些模型中。这正是企业采用 AI 时所面临的一大棘手问题,也是 Fireworks AI 与 MongoDB 开展合作的原因。借助 MongoDB Atlas,开发者可以安全地将运营数据、非结构化数据和向量嵌入进行统一,从而安全打造一致、正确和差异化的 AI 应用程序和体验。

Fireworks AI 和 MongoDB 强强联手,精心整理并优化了各种开源模型,为想要结合企业自身专有数据使用这些模型的开发者提供了解决方案,并且能够快速安全地实现这一切。

Fireworks AI提供快如闪电的模型:将速度、效率和价值“一网打尽”

Fireworks AI 凭借快如闪电的推断平台,整理、优化并部署了 40 多种不同的 AI 模型。这些优化措施可以同时节省大量成本、减少延迟、提高吞吐量。他们的平台通过以下方式实现这些效果:

● 现成模型、优化模型和插件:Fireworks AI 提供一系列高质量的文本、嵌入和图像基础模型(详见:https://fireworks.ai/models)。开发者可以利用这些模型或者对其进行微调,然后部署自己的模型,再借助 MongoDB Atlas 将自己的专有数据引入模型。
● 微调功能:为了进一步提高模型的准确性和速度,Fireworks AI 还提供了微调服务,该服务可利用命令行界面 (CLI) 从 MongoDB Atlas 等数据库中摄取采用 JSON 格式的对象。
● 用于开发和生产的各种简易界面和 API:Fireworks AI Playground 可让开发者直接在浏览器中与模型进行交互,而且支持通过方便的 REST API 以编程方式进行访问。Fireworks AI Playground 与 OpenAI API 兼容,因此可以与更广泛的大型语言模型 (LLM) 生态系统进行互操作。
●使用指南(详见https://github.com/fw-ai/cookbook):这份指南简单易用,提供了一套全面的即用型解决方案,可以满足包括微调、生成和评估在内的各种应用场景。

Fireworks AI 和 MongoDB:通过整理和优化快速的模型为 AI 设定标准

借助 Fireworks AI 和 MongoDB Atlas,应用可在隔离的环境中运行,在符合最严格监管标准的复杂安全控制措施保护下,确保正常运行时间和数据的私密性:

● 作为优秀的开源模型 API 提供商,Fireworks AI 每天提供660 亿个词元(并且数量还在不断增长)。
● 您可以在久经考验的Atlas平台上运行 App,该平台为数以万计的客户提供服务,其中不乏高增长的初创公司和规模庞大的企业和政府。

Fireworks AI 和 MongoDB 联合解决方案可以实现以下功能:
● 基于大量文档进行检索增强生成 (RAG) 或问答 (Q&A):摄入大量文档,生成摘要和结构化数据,从而为对话式 AI 提供支持。
● 通过语义/相似性搜索进行分类:对来自销售电话、视频会议等事件中的概念和情绪进行分类和分析,以提供更好的情报和策略。或者,使用产品图片和文字对产品目录进行整理和分类。
● 从图像中提取结构化数据:从图像中提取有意义的内容,生成可在库存照片、时尚、物体检测、医疗诊断应用等一系列视觉应用中处理和搜索的结构化数据。
● 智能警报:实时处理大量数据,自动检测欺诈、网络安全威胁等活动并发出警报。

image.png

Fireworks 教程展示了如何使用 RAG 和 MongoDB Atlas 将自己的数据引入 LLM

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
1天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI在故障预测与自动化修复中的应用
【6月更文挑战第15天】本文探讨了人工智能(AI)技术在现代IT运维领域的革新性应用,重点分析了AI如何通过机器学习算法实现对系统故障的预测和自动化修复。文章首先概述了智能化运维的概念及其重要性,随后详细介绍了AI技术在故障检测、诊断和修复过程中的关键作用,并通过实际案例展示了AI运维解决方案的有效性。最后,文章讨论了实施智能化运维的挑战与未来发展趋势。
12 3
|
1天前
|
机器学习/深度学习 人工智能 安全
AI在医疗诊断中的应用及其前景
【6月更文挑战第15天】本文将探讨人工智能(AI)在医疗诊断领域的应用及其前景。我们将分析AI技术如何改变医疗行业的面貌,提高诊断的准确性和效率,以及它在未来可能带来的挑战和机遇。
|
1天前
|
数据采集 机器学习/深度学习 人工智能
智能化运维:AI在IT管理中的应用与挑战
【6月更文挑战第15天】随着人工智能(AI)技术的飞速发展,其在IT运维领域的应用正变得日益广泛。本文将探讨AI技术如何革新传统的IT运维模式,提升效率和准确性,并分析在实施智能化运维过程中可能遇到的挑战。
|
2天前
|
人工智能 安全 机器人
AI在企业中的应用进入成熟期了吗?
AI在企业中的应用进入成熟期了吗?
|
2天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用及其挑战
【6月更文挑战第14天】本文探讨了人工智能(AI)在医疗诊断领域的应用,以及其面临的挑战。AI技术,特别是深度学习和机器学习,已经在医疗影像分析、疾病预测和个性化治疗等方面展现出巨大的潜力。然而,尽管AI在医疗诊断中取得了显著的进步,但仍面临着数据隐私、算法透明度和医疗责任等挑战。
|
1月前
|
存储 SQL NoSQL
什么是 MongoDB,为什么它是当今最受欢迎的数据库之一?
什么是 MongoDB,为什么它是当今最受欢迎的数据库之一?
|
1月前
|
JSON NoSQL MongoDB
理解Nosql数据库的mongodb
【5月更文挑战第5天】MongoDB是2009年发布的一款通用型NoSQL数据库,结合了关系模型和NoSQL的优点,适用于各种现代应用。其特点包括图形界面、数据服务、云基础设施集成(AWS, Azure, Google Cloud)。它具备全面的查询能力、ACID事务、可调整的一致性保证,并有多语言驱动及工具,可在任何地方运行。
209 4
|
1月前
|
存储 NoSQL MongoDB
MongoDB数据库转换为表格文件的Python实现
MongoDB数据库转换为表格文件的Python实现
154 0
|
5天前
|
存储 JSON NoSQL
【文档数据库】ES和MongoDB的对比
【文档数据库】ES和MongoDB的对比
10 1
|
10天前
|
NoSQL JavaScript 安全
精心操作MongoDB:删除数据库的关键步骤和重要事项
精心操作MongoDB:删除数据库的关键步骤和重要事项