Fireworks AI和MongoDB:依托您的数据,借助优质模型,助力您开发高速AI应用

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
简介: 我们欣然宣布MongoDB与 Fireworks AI 正携手合作让客户能够利用生成式人工智能 (AI)更快速、更高效、更安全地开展创新活动

我们欣然宣布MongoDB与 Fireworks AI 正携手合作让客户能够利用生成式人工智能 (AI)更快速、更高效、更安全地开展创新活动

image.png

Fireworks AI由 Meta旗下 PyTorch团队的行业资深人士于 2022 年底创立,他们在团队中主要负责优化性能、提升开发者体验以及大规模运行 AI 应用。

Fireworks AI 将这些专业知识运用于自己的生产 AI 平台,从而整理并优化了业界优质的开放模型。该公司进行了基准测试,结果表明,在 Fireworks AI 上运行的生成式 AI 模型的推断速度比其他同类平台快 4 倍,吞吐量和规模高出多达 8 倍。

模型属于应用程序堆栈的一部分。然而,开发者要想发挥生成式人工智能的力量,还需要将企业数据引入这些模型中。这正是企业采用 AI 时所面临的一大棘手问题,也是 Fireworks AI 与 MongoDB 开展合作的原因。借助 MongoDB Atlas,开发者可以安全地将运营数据、非结构化数据和向量嵌入进行统一,从而安全打造一致、正确和差异化的 AI 应用程序和体验。

Fireworks AI 和 MongoDB 强强联手,精心整理并优化了各种开源模型,为想要结合企业自身专有数据使用这些模型的开发者提供了解决方案,并且能够快速安全地实现这一切。

Fireworks AI提供快如闪电的模型:将速度、效率和价值“一网打尽”

Fireworks AI 凭借快如闪电的推断平台,整理、优化并部署了 40 多种不同的 AI 模型。这些优化措施可以同时节省大量成本、减少延迟、提高吞吐量。他们的平台通过以下方式实现这些效果:

● 现成模型、优化模型和插件:Fireworks AI 提供一系列高质量的文本、嵌入和图像基础模型(详见:https://fireworks.ai/models)。开发者可以利用这些模型或者对其进行微调,然后部署自己的模型,再借助 MongoDB Atlas 将自己的专有数据引入模型。
● 微调功能:为了进一步提高模型的准确性和速度,Fireworks AI 还提供了微调服务,该服务可利用命令行界面 (CLI) 从 MongoDB Atlas 等数据库中摄取采用 JSON 格式的对象。
● 用于开发和生产的各种简易界面和 API:Fireworks AI Playground 可让开发者直接在浏览器中与模型进行交互,而且支持通过方便的 REST API 以编程方式进行访问。Fireworks AI Playground 与 OpenAI API 兼容,因此可以与更广泛的大型语言模型 (LLM) 生态系统进行互操作。
●使用指南(详见https://github.com/fw-ai/cookbook):这份指南简单易用,提供了一套全面的即用型解决方案,可以满足包括微调、生成和评估在内的各种应用场景。

Fireworks AI 和 MongoDB:通过整理和优化快速的模型为 AI 设定标准

借助 Fireworks AI 和 MongoDB Atlas,应用可在隔离的环境中运行,在符合最严格监管标准的复杂安全控制措施保护下,确保正常运行时间和数据的私密性:

● 作为优秀的开源模型 API 提供商,Fireworks AI 每天提供660 亿个词元(并且数量还在不断增长)。
● 您可以在久经考验的Atlas平台上运行 App,该平台为数以万计的客户提供服务,其中不乏高增长的初创公司和规模庞大的企业和政府。

Fireworks AI 和 MongoDB 联合解决方案可以实现以下功能:
● 基于大量文档进行检索增强生成 (RAG) 或问答 (Q&A):摄入大量文档,生成摘要和结构化数据,从而为对话式 AI 提供支持。
● 通过语义/相似性搜索进行分类:对来自销售电话、视频会议等事件中的概念和情绪进行分类和分析,以提供更好的情报和策略。或者,使用产品图片和文字对产品目录进行整理和分类。
● 从图像中提取结构化数据:从图像中提取有意义的内容,生成可在库存照片、时尚、物体检测、医疗诊断应用等一系列视觉应用中处理和搜索的结构化数据。
● 智能警报:实时处理大量数据,自动检测欺诈、网络安全威胁等活动并发出警报。

image.png

Fireworks 教程展示了如何使用 RAG 和 MongoDB Atlas 将自己的数据引入 LLM

相关文章
|
3天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段三:自定义 Advisor 与结构化输出实现以及对话记忆持久化开发
本文介绍如何在Spring AI中自定义Advisor实现日志记录、结构化输出、对话记忆持久化及多模态开发,结合阿里云灵积模型Qwen-Plus,提升AI应用的可维护性与功能性。
87 20
AI 超级智能体全栈项目阶段三:自定义 Advisor 与结构化输出实现以及对话记忆持久化开发
|
4天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
104 21
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
4天前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
|
4天前
|
数据采集 人工智能 前端开发
Playwright与AI智能体的网页爬虫创新应用
厌倦重复测试与低效爬虫?本课程带您掌握Playwright自动化工具,并融合AI大模型构建智能体,实现网页自主分析、决策与数据提取,完成从脚本执行到智能架构的能力跃升。
|
4天前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
81 7
|
5天前
|
人工智能 运维 安全
聚焦 AI 应用基础设施,云栖大会 Serverless AI 全回顾
2025 年 9 月 26 日,为期三天的云栖大会在杭州云栖小镇圆满闭幕。随着大模型技术的飞速发展,我们正从云原生时代迈向一个全新的 AI 原生应用时代。为了解决企业在 AI 应用落地中面临的高成本、高复杂度和高风险等核心挑战,阿里云基于函数计算 FC 发布一系列重磅服务。本文将对云栖大会期间 Serverless+AI 基础设施相关内容进行全面总结。
|
6天前
|
设计模式 机器学习/深度学习 人工智能
AI-Native (AI原生)图解+秒懂: 什么是 AI-Native 应用(AI原生应用)?如何设计一个 AI原生应用?
AI-Native (AI原生)图解+秒懂: 什么是 AI-Native 应用(AI原生应用)?如何设计一个 AI原生应用?
|
7天前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
66 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
|
9天前
|
边缘计算 人工智能 算法
AI在智慧能源管理中的边缘计算应用
AI在智慧能源管理中的边缘计算应用
77 13
|
10天前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。

推荐镜像

更多