北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞

简介: 【10月更文挑战第17天】北京大学计算机学院张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可能导致误诊和医疗事故,引起学术界和工业界的广泛关注。研究强调了医疗AI系统安全性评估的重要性。

近日,北京大学计算机学院张铭教授团队在国际顶级人工智能期刊上发表了一项重要研究成果,该研究揭露了当前医疗AI系统中存在的致命漏洞。这一发现不仅引起了学术界的广泛关注,也为医疗AI的安全性敲响了警钟。

随着人工智能技术的快速发展,医疗AI在辅助诊断、个性化治疗等方面展现出巨大的潜力。然而,医疗AI系统的安全性问题也日益凸显。一旦医疗AI系统被黑客攻击或存在漏洞,可能会导致误诊、漏诊等严重后果,甚至危及患者生命。因此,对医疗AI系统进行安全性评估和漏洞挖掘具有重要意义。

张铭教授团队的研究成果正是针对这一问题展开的。他们通过对多个主流医疗AI系统进行深入研究和分析,发现了一种新型的漏洞,该漏洞可能被黑客利用,从而对医疗AI系统进行恶意攻击。

在研究过程中,张铭教授团队采用了多种先进的技术手段,包括模糊测试、符号执行等,对医疗AI系统进行了全面的安全性评估。他们发现,这些系统中普遍存在一种名为“模型反演”的漏洞。

所谓“模型反演”,是指攻击者通过输入特定的数据样本,使得医疗AI系统输出错误的结果。这种漏洞的存在,使得攻击者可以轻易地篡改医疗AI系统的诊断结果,从而达到误导医生或患者的目的。

更令人担忧的是,这种漏洞不仅存在于理论研究中,而且已经在实际应用中得到了验证。张铭教授团队通过实验发现,利用这种漏洞,攻击者可以以极高的成功率对医疗AI系统进行攻击,从而导致严重的医疗事故。

张铭教授团队的研究成果一经发表,立即引起了学术界和工业界的广泛关注。许多专家学者纷纷表示,这一发现对于推动医疗AI系统的安全性研究具有重要意义。

首先,该研究揭示了医疗AI系统在安全性方面存在的严重问题,为相关领域的研究人员提供了新的研究方向和思路。其次,该研究还为医疗AI系统的开发者提供了宝贵的经验教训,提醒他们在设计和实现医疗AI系统时必须充分考虑安全性问题。

然而,也有观点认为,张铭教授团队的研究结果可能被过度解读或夸大其词。一些人认为,虽然医疗AI系统存在漏洞,但这些漏洞并不一定会导致严重的医疗事故。此外,随着技术的进步和安全性措施的加强,这些漏洞很可能会被逐渐修复和消除。

论文地址:https://rdcu.be/dUytb

目录
相关文章
|
2月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
197 6
|
3月前
|
存储 人工智能 文字识别
医疗病历结构化处理系统技术白皮书——基于多模态AI的医联体数据治理方案
本系统基于双端协同架构,集成移动端OCR识别与云端数据分析,实现医疗文档高效结构化处理。采用PaddleOCR轻量引擎与隐私计算技术,支持离线识别与敏感信息脱敏。后端构建分布式数据仓库与多租户机制,满足PB级存储与数据安全合规要求。实测OCR准确率达96.2%(印刷体)与88.7%(手写体),字段抽取F1值92.4%,显著提升病历处理效率与质量。
335 3
|
8月前
|
人工智能 API 语音技术
VideoCaptioner:北大推出视频字幕处理神器,AI自动生成+断句+翻译,1小时工作量5分钟搞定
VideoCaptioner 是一款基于大语言模型的智能视频字幕处理工具,支持语音识别、字幕断句、优化、翻译全流程处理,并提供多种字幕样式和格式导出。
1223 89
VideoCaptioner:北大推出视频字幕处理神器,AI自动生成+断句+翻译,1小时工作量5分钟搞定
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
DeepMesh 是由清华大学和南洋理工大学联合开发的 3D 网格生成框架,基于强化学习和自回归变换器,能够生成高质量的 3D 网格,适用于虚拟环境构建、动态内容生成、角色动画等多种场景。
508 4
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
|
8月前
|
存储 人工智能 搜索推荐
HealthGPT:你的AI医疗助手上线了:支持X光到病理切片,诊断建议+报告生成全自动
HealthGPT 是浙江大学联合阿里巴巴等机构开发的先进医学视觉语言模型,具备医学图像分析、诊断辅助和个性化治疗方案建议等功能。
907 5
HealthGPT:你的AI医疗助手上线了:支持X光到病理切片,诊断建议+报告生成全自动
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
Baichuan-M1-14B 是百川智能推出的首个开源医疗增强大模型,专为医疗场景优化,支持多语言、快速推理,具备强大的医疗推理能力和通用能力。
551 17
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
|
7月前
|
机器学习/深度学习 人工智能 运维
AI和开源时代的计算机课程建设和改革建议
人工智能与开源技术正深刻影响高校计算机教育。通过构建“AI+开源”驱动的课程体系,深化专业课AI融合,强化跨学科项目学习,可培养复合型人才。同时,打造开源实验平台、推广智能教学模式、共建产教融合生态,并加强AI伦理教育,将推动教育数字化转型。Websoft9等工具为连接理论与实践提供支持,助力高校培养适应未来的技术人才。
|
8月前
|
机器学习/深度学习 人工智能 API
Aligner:自动修正AI的生成结果,北大推出残差修正模型对齐技术
介绍北大团队提出的 Aligner 模型对齐技术,通过学习对齐答案与未对齐答案之间的修正残差,提升大语言模型的性能。
306 28
|
9月前
|
数据采集 人工智能 算法
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
296 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%

热门文章

最新文章