AI工具-标注工具labelme

简介: Labelme是一款Python开源图像标注工具,支持图像分类、目标检测、语义分割和实例分割等任务。它提供了一个GUI界面,用户可绘制圆形、方形和多边形进行标注。安装通过`pip install labelme`和`lxml`,使用时可导入预定义标签列表。标注结果保存为json文件,包含类别、边界框信息和形状类型。Labelme还支持格式转换,如转换为VOC或COCO格式。这款工具对视频标注也兼容。5月更文挑战第9天

AI工具-标注工具labelme

在人工智能领域,数据是一切应用的基础,特别是有标签的数据。今天介绍一款在图像视觉领域的基于python开源打标签工具Labelme, 该工具可以支持图像分类,目标检测, 语义分割和实例分割等最常见的视觉任务。

其他类似的工具有Labelimg

md-2022-03-27-22-37-18.png

1. 安装

lableme开源代码见 https://github.com/wkentaro/labelme

本地安装如下:

pip install labelme
pip install lxml

## 运行
./labelme

md-2022-03-15-11-39-02.png

2 使用

从上面的界面(pyQt)可以看出Labelme

  • 左边为标注的图形:支持圆形,方形 和多边形
  • 中间为图像标注区域
  • 右边为类别和文件信息

md-2022-03-15-13-58-13.png

作为打标工具,Labelme是支持在标注时再输入标签类别信息,但是建议在标注之前构建一个标签元数据,作为输入。

建议的使用步骤如下:

构建标签列表
创建标签名称label.txt,格式如下前面两行为固定

__ignore__
_background_
dog
cat

导入标签,并启动

labelme --labels label.txt

开始标注
根据标注任务的不同,Labelme会生成一个与图片名称相同的json文件,以目标检测为例,标注好的json样例为:

{
   
   
  "version": "4.6.0",
  "flags": {
   
   },
  "shapes": [
    {
   
   
      "label": "nochefclothes",
      "points": [
        [
          278.53846153846155,
          390.3076923                                                     
        ],
        [
          513.9230769230769,
          955.5384615384615
        ]
      ],
      "group_id": null,
      "shape_type": "rectangle",
      "flags": {
   
   }
    }
  ],
  "imagePath": "3a7b9c1896e19feab13bc201cbf2a86b.jpeg",
  "imageData": "",
  "imageHeight": 1000,
  "imageWidth": 798
}

可以看出

  • label为类别信息,
  • points为bounding box位置信息,如果是目标检测(方形)分别为左上(xmin,ymin)和右下(xmax, ymax)的坐标信息,如果是语义分割和实例分割,则为多个点
  • shape_type: 目标检测为rectangle, 语义分割和实例分割为polysgons

等标注完成,保存即可;标注完成之后想查看标注结果,可以通过不同的方式来打开

# 空白
labelme --labels label.txt

# 单图json
labelme ./img1.json --labels label.txt

# 目录方式
labelme ./img_dir --labels label.txt

另外,Labelme也是支持视频标注的。通过视频抽帧之后再标注。

3. 格式转换

由于Labelme是按照json格式来保存标注结果的,这和现有的常用任务格式有些区别,如目标检测的VOC COCO等,Labelme也提供的相应的转换工具脚本进行转换,十分方便。

  • 转换voc
# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/SegmentationClass
#   - data_dataset_voc/SegmentationClassVisualization
#   - data_dataset_voc/SegmentationObject
#   - data_dataset_voc/SegmentationObjectVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt

python -u labelme2voc.py ./multi_defect ./multi_defect_voc --labels ./labels.txt --noviz
  • 转换coco
# It generates:
#   - data_dataset_coco/JPEGImages
#   - data_dataset_coco/annotations.json
./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt

4. 总结

本文简单分享了开源标注工具Labelme的使用,希望对你有帮助。先总结如下:

  • labelme适用于图像分类、目标检测、语义分割、实例分割
  • labelme 图片视频都可用
  • 开始新建立标签文件,记住前两行是固定的(没有特别的含义,就是代码逻辑是这样的)
  • json注意label,points和shape_type
  • labelme2voc和labelme2coco来转换经典格式
目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 算法
AI可以做电商主图了:技术原理,AI电商图生成工具对比及技术解析
双十一临近,电商主图需求激增。AI技术凭借多图融合、扩散模型等,实现高效智能设计,30秒生成高质量主图,远超传统PS效率。支持风格迁移、背景替换、文案生成,助力商家快速打造吸睛商品图,提升转化率。
1138 0
|
3月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
465 115
|
3月前
|
人工智能 安全 搜索推荐
AI的下一个前沿:从静态工具到动态代理
AI的下一个前沿:从静态工具到动态代理
278 113
|
3月前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
399 117
|
3月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
694 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
3月前
|
机器学习/深度学习 人工智能 算法
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含2500张已标注实验室设备图片,涵盖空调、灭火器、显示器等10类常见设备,适用于YOLO等目标检测模型训练。数据多样、标注规范,支持智能巡检、设备管理与科研教学,助力AI赋能智慧实验室建设。
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
|
3月前
|
机器学习/深度学习 人工智能 监控
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含5000张已标注牛行为图片,涵盖卧、站立、行走三类,适用于YOLO等目标检测模型训练。数据划分清晰,标注规范,场景多样,助力智慧牧场、健康监测与AI科研。
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
双 11 电商效率突围:10 款 AI 工具的技术落地与实践指南
2025年双11促销长达38天,电商迎来AI重构关键期。本文剖析10款主流AI工具技术原理,涵盖设计、文案、投放、客服等场景,揭示计算机视觉、自然语言处理等技术如何驱动电商智能化升级,助力企业高效应对大促挑战。
733 1
|
3月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
906 50
|
4月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
1116 54

热门文章

最新文章