如何构建云原生的开源大数据平台 | 云原生开源大数据应用实战

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 随着开源技术与云原生的高度融合,阿里云开源大数据平台在功能性、易用性、安全性上积累了丰富的实践经验,已成功服务数千家企业,助力其聚焦自身核心业务优势,缩短开发周期、简化运维难度,拓展更多业务创新。10月29日,阿里云发布“如何构建云原生的开源大数据平台”解决方案,邀请到了来自阿里云、微淼、Inmobi的技术专家为大家现身说法,呈现上云实践。


随着开源技术与云原生的高度融合,阿里云开源大数据平台在功能性、易用性、安全性上积累了丰富的实践经验,已成功服务数千家企业,助力其聚焦自身核心业务优势,缩短开发周期、简化运维难度,拓展更多业务创新。10月29日,阿里云发布“如何构建云原生的开源大数据平台”解决方案,邀请到了来自阿里云、微淼、Inmobi的技术专家为大家现身说法,呈现上云实践。

image.png

本文主要从数据湖、实时数仓、检索分析等场景展开分享了云原生开源大数据应用实战


分享嘉宾: 刘玉全,阿里云智能大数据解决方案架构师


视频地址:https://yqh.aliyun.com/live/bigdataop


一、前言

随着各行各业的数据越来越多,自建大数据基础设施逐渐暴露出各种问题,比如采购周期长、运维成本高,技术栈复杂等。而选择上云成为抵抗该类问题的较优选择,企业不仅可以享受到云上强大的基础设施能力,同时云上丰富的生态计算和存储的弹性伸缩能力,为企业降本增效。


互联网中的 APP 普遍存在着内容推荐、实时风控、信息检索等各类解决方案需求,而实现这类需求则需要强大的计算和存储的能力。

 

二、云原生的开源大数据统一平台

image.png

云原生的开源大数据统一平台,是构建在云上,基于云原生的资源,如ECS \ OSS,这类云主机和云存储的 IaaS 基础设施。云原生开源大数据平台提供弹性伸缩、智能诊断、数据开发和监控报警等基础功能。


同时整个云原生大数据平台产品,可以基于开源 Apache Hadoop 生态运行,也可以基于 K8S 的资源管理平台来构建,而产品体系大概分为两类:

  • 半托管形态

以 E-MapReduce(简称 EMR,下同)产品为代表,EMR 为用户提供主流开源大数据组件,比如 HivesparkKafkaPrestoClickhouse 等,用户可以自由搭配使用,并由 EMR 提供产品管控功能,让用户方便的使用开源大数据产品。

  • 全托管形态

如 FlinkSparkHadoopKafkaElasticsearch 等主流计算引擎或平台,提供全托管的 Service 服务。全托管的实时计算平台 Flink VervericaSpark 原厂的 Databricks Cloudera CDP 平台以及阿里云 Elasticsearch,为不同用户提供不同开源产品的使用方法。

同时阿里云也有中心化的产品,数据湖——“数据湖构建 DLF”,为用户提供统一的元数据入湖、管理等功能,与其他产品进行组合,提供完整的数据湖解决方案。

 

三、开源大数据上云

开源大数据平台 E-MapReduce 

image.png

大数据上云主要使用开源大数据平台 EMR,是运行在阿里云平台上的大数据处理系统解决方案。基于开源组件,进行了优化增强,性能远高于开源版本,并且跟随开源版本升级,与各个组件进行适配,保证兼容性的同时,具有足够的稳定性:

  • 兼容开源大数据组件

针对 Spark、Hadoop Kafka 等组件,基于开源版本进行了优化增强,性能得到极大提升。

  • 半托管形态

对于半托管式架构,用户自主可控参与度大,可与现有大数据资源进行无缝的迁移。

  • 云原生

阿里云云原生生态,支持数十种的 ECS 实例族,包括计算型、内存型、通用型、大数据型和 GPU 异构计算型,匹配不同大数据场景,同时提供分钟级集群创建和扩容,并支持弹性伸缩和竞价实例。

由于大数据场景一般有明显的数据波峰波谷的特点。比如凌晨的任务,需要一个比较高的 SLA 保障。而白天可能就是一个资源低谷,主要完成一些开发任务。我们通过弹性缩容能力,可以很好的达到节省成本的效果。


  • 云原生支持阿里云的对象存储 OSS

采用 JindoFS 加速 OSS 的性能,降低数据存储的成本。与阿里云的其他产品进行深度的集成,可以在 DataWorks 上使用 EMR,作为作业计算和数据存储的引擎,集成数据湖构建 DLF,实现数据湖场景下的多引擎的统一元数据的管理。


  • 企业级特性

比如 EMR APM,在集群主机服务作业层面的一个监控告警和诊断,支持 KerberosRAM 作为鉴权平台 Ranger 的权限管理,保证数据的安全。阿里云企业资源组和标签,方便企业做成本核算。

 

开源大数据上云方案

image.png

开源大数据搬站上云,是将 IDC 中自建或其他大数据平台,迁移到阿里云上,并通过EMR 产品延续开源技术栈,链接阿里云生态和开源大数据的生态。


根据数据规模和预算的不同,可以通过闪电立方、专线和公网的方式,按照计划,高效的把数据和任务迁移到云上,上云后集成阿里云整个数据生态:

  • 集成 DataWorks

提供高效、安全可靠的一站式大数据开发和治理平台。

  • 集成对象存储 OSS

EMR 中所有的计算引擎均支持采用 OSS 作为存储,可以将 OSS HDFS 一样使用,并采用 JindoFS OSS 数据读写进行加速。JindoFS 是数据湖的一个重要组件,现在有大量的用户在使用 JindoFS 构建云上的数据湖,实现数据库的分层存储,降低存储成本。

  • 集成数据湖构建 DLF

EMR 默认支持使用数据湖构建 DLF 进行元数据的管理,方便数据湖场景下的元数据管理。阿里云数据湖构建 DLF,使用阿里云对象存储 OSS 作为云上数据湖的统一存储

在云上,可以使用多种计算引擎,面向不同的大数据计算场景,使用统一的数据湖存储方案,避免数据同步产生的复杂性和一些运维的成本。

 

云原生的弹性:20%成本优化

image.png

云原生的弹性能力可以带来20%的成本优化。


传统的大数据计算业务具有很强的周期性,比如明显的波峰波谷,凌晨负载高而白天负载低,用户在规划集群的时候,传统模式下是要按照峰值规划集群,对资源有一定程度的冗余。


EMR JindoFS+ OSS 的数据湖方案,实现与 HDFS 基本一致的性能表现,为客户实现云上大数据架构的升级,实现了存算分离,让客户享受到计算弹性扩展与存储弹性扩展的红利,让客户更专注在应用层的开发。


使用存算分离架构后,集群根据业务周期和负载进行弹性伸缩,使用固定资源池加弹性资源池的方式:

对于比较固定的计算资源,使用固定的资源,确保可以锁定资源完成计算。

对于波峰或者是突发计算任务,采用弹性资源池来应对,以降低对计算资源的浪费。


四、云上实时应用

典型实时应用场景

image.png

大数据经过这么多年的发展,大规模计算的能力已经不是问题,时效性成为了一个重要的特性。


在阿里双11的场景中,当天所有的数据分析基本都是实时化,秒级更新;由于越来越多的离线处理,无法满足业务的发展,而需要更多的实时处理嫩能力,比如实时数仓,实时大屏,实时报表等。

市场投放同学基于实时投放的统计效果,实时调整投放策略;实时推荐,基于用户的实时行为计算用户的兴趣,然后帮助用户选择合适的内容;实时风控基于用户的行为特征,实时判断用户是否为作弊的用户,对作弊用户进行一些处罚的操作。


实时计算Flink

image.png

阿里云实时计算Flink ,是一套基于 Apache Flink 构建的一站式实时大数据分析平台,提供标准 SQL,降低业务的开发门槛,帮助企业向实时化、智能化大数据计算升级。


Flink 作为实时计算的流式计算引擎,可以处理多种实时数据,包括在线服务日志、IOT传感器数据、云上业务数据库 RDS 中的 Binlog


Flink 订阅 Kafka,消息队列中的实时数据,进行数据分析和处理,然后将分析的结果,实时写入到不同的数据存储中。例如 ClickhouseHologresElasticsearch 等产品,通过数据服务,支撑上层的数据应用。


实时计算Flink 基于平台底座,提供 Serverless 服务,全托管的容器化支撑:

  • 计算引擎 Runtime

包括了自研的流状态存储引擎 GeminiSQL 算子和作业调度的深度优化及丰富的开箱即用的 Flink connector 开发平台,提供了作业照顾的全生命周期管理。


  • AutoPilot 这个智能调优

可以在保证各个算子和流作业上下游性能稳定的前提下,调整作业并行度和资源的配置,然后全局优化作业,解决因吞吐量不足,导致全链路反压和资源浪费等各种性能调优的问题。


  • Prometheus 的全链路监控报警

所有的 Flink 实施任务都是要保证7×24小时运行,所以需要一个完善的监控体系,提供完善的任务运行监控指标,然后查看任务运行的健康状态。当作业发生异常时,及时通知相关人员介入处理。

 

云上开源实时数仓的最佳实践

image.png

在云上可以通过 FlinkKafkaClickhouse 实现一套全链路的实时数仓的最佳实践。

将业务日志、业务数据,实时采集到消息引擎 Kafka 中,利用 Flink 对数据进行实时的ETL 处理汇总分析,然后将结果保存到 Clickhouse 中,通过 Clickhouse 支撑上层大数据的应用,比如实时报表,实时营销的分析,AB 实验的功能。


五、云上检索应用

典型检索应用场景

image.png

现在每一个移动互联网中的用户,每天都在查询各种各样的信息。比如附近的餐厅、酒店、你的购物订单、物流的信息应用。

那么就需要帮助用户高效的获取信息,提供一个面向海量数据的信息检索的服务。


日常如我们在购物时搜索自己感兴趣的商品,朋友聚餐时寻找附近有特色餐厅和咖啡馆,研发同学,在业务系统产生异常日志异常时,通过日志进行分析排查问题。


阿里云 Elasticsearch

上述场景都需要一个信息检索的服务,而 Elasticsearch 拥有强大的全文检索的能力,可以实现复杂的组合条件和模糊的查询,然后轻松应对各种文本和地理位置信息的检索查询。

阿里云 Elasticsearch 提供全托管的ELK服务,100%兼容开源,免费提供 X-pack 商业插件,即开即用,按需付费。同时,深入功能与内核性能优化,提供更丰富的分析检索能力,更安全、高可用的服务:

  • 整体成本降低

与自建ES相比,由于整体云上托管,无需底层资源的运维投入,实现较低的运维成本

  • 集群管控

实现集群弹性扩缩容、Eyou 智能运维统一监控。

  • 与自建ES的能力差异

提供免费的 X-pack 插件、达摩院 NLP 分词插件、以及向量检索插件

  • 安全高可用

X-pack 安全组件和字段级别的安全控制,满足高可用和数据自动备份,同城多活架构,实现服务可靠性达到99.9999999%

 

云上信息检索应用最佳实践

image.png

各个企业在经营过程中,都会产生大量数据,有结构化和半结构化的数据。

比如说行业知识、地理位置信息、订单信息,音视频数据。这些数据可能存储在数据库RDS 或者是对象存储 OSS 中,亦或者是大数据存储引擎中。

通过数据集成工具,可以将这些数据同步到消息引擎或者是数据仓库中,通过Flink 对数据进行实时的处理,由 Maxcompute 或者 EMR SparkHive ,然后进行离线计算,将结果保存到 Elasticsearch中,为上层的数据应用提供检索服务,比如全文的检索和地址的查找。

 

以上就是云原生开源大数据应用实战分享的全部内容。




相关信息


点击链接观看直播回放,超多活动信息等你来

https://yqh.aliyun.com/live/bigdataop

⭐更多EMR相关信息,欢迎前往EMR产品详情页:    https://www.aliyun.com/product/emapreduce


⭐更多数据湖相关信息,欢迎前往数据湖构建DLF 产品详情页:  

https://www.aliyun.com/product/bigdata/dlf


欢迎钉钉扫码加入EMR产品交流群,为您提供最新的产品直播、产品活动及技术支持!

image.png

同重云E-MapReduce交...

Spark

美容瑞华天省新修康教电进重人,就锁

WOA量OTODO:OOAOODAOOO

微信公众号

关注我们获取最新资讯

EMR产品交流钉钉群


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
154 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
186 1
|
3月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
93 5
|
3月前
|
存储 SQL 分布式计算
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
73 3
|
3天前
|
人工智能 分布式计算 数据处理
MaxCompute Data + AI:构建 Data + AI 的一体化数智融合
本次分享将分为四个部分讲解:第一部分探讨AI时代数据开发范式的演变,特别是MaxCompute自研大数据平台在客户工作负载和任务类型变化下的影响。第二部分介绍MaxCompute在资源大数据平台上构建的Data + AI核心能力,提供一站式开发体验和流程。第三部分展示MaxCompute Data + AI的一站式开发体验,涵盖多模态数据管理、交互式开发环境及模型训练与部署。第四部分分享成功落地的客户案例及其收益,包括互联网公司和大模型训练客户的实践,展示了MaxFrame带来的显著性能提升和开发效率改进。
|
2月前
|
运维 Cloud Native 云计算
云原生之旅:Docker容器化实战
本文将带你走进云原生的世界,深入理解Docker技术如何改变应用部署与运维。我们将通过实际案例,展示如何利用Docker简化开发流程,提升应用的可移植性和伸缩性。文章不仅介绍基础概念,还提供操作指南和最佳实践,帮助你快速上手Docker,开启云原生的第一步。
|
3月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
42 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
3月前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
66 0
|
3月前
|
SQL 存储 监控
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
大数据-161 Apache Kylin 构建Cube 按照日期、区域、产品、渠道 与 Cube 优化
69 0