使用Ranger对Hive数据进行脱敏

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
简介: Ranger支持对Hive数据的脱敏处理(Data Masking),它对`select`的返回结果进行脱敏处理,对用户屏蔽敏感信息。

Ranger支持对Hive数据的脱敏处理(Data Masking),它对select的返回结果进行脱敏处理,对用户屏蔽敏感信息。

备注:
该功能针对HiveServer2的场景(如beeline/jdbc/Hue等途径执行的select),对于使用Hive Client(如hive -e 'select xxxx')不支持。

接下来介绍如何在E-MapReduce中使用该功能的步骤。

1.Hive组件配置Ranger

参见文档: Enable Hive Ranger Plugin

2. 配置Data Mask Policy

在Ranger UI的emr-hive的service页面可以对用户访问Hive数据进行脱敏处理。

  • 支持多种脱敏处理方式,比如显示开始的4个字符/显示最后的4个字符/Hash处理等
  • 配置Mask Policy时不支持通配符(如policy中table/column不能配置为*)
  • 每个policy只能配置一个列的mask策略,多个列需要配置各自的mask policy

配置Policy流程:
mask_1

mask_2

mask_4

最后保存即可。

3. 测试数据脱敏

场景:
用户test在select表testdb1.testtbl中列a的数据时,只显示最开始的4个字符。

流程:
a) 配置policy
在上面一节的最后一个截图,其实就是配置了该场景的一个policy,可参考上图(其中脱敏方式选择了show first 4)。

b) 脱敏验证
test用户使用beeline连接HiveServer2,执行select a from testdb1.testtbl

mask5

如上图所示,test用户执行select命令后,列a显示的数据只有前面4个字符是正常显示,后面字符全部用x来脱敏处理。

目录
相关文章
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
229 4
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
337 3
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
178 2
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
319 0
|
SQL 物联网 数据处理
"颠覆传统,Hive SQL与Flink激情碰撞!解锁流批一体数据处理新纪元,让数据决策力瞬间爆表,你准备好了吗?"
【8月更文挑战第9天】数据时代,实时性和准确性至关重要。传统上,批处理与流处理各司其职,但Apache Flink打破了这一界限,尤其Flink与Hive SQL的结合,开创了流批一体的数据处理新时代。这不仅简化了数据处理流程,还极大提升了效率和灵活性。例如,通过Flink SQL,可以轻松实现流数据与批数据的融合分析,无需在两者间切换。这种融合不仅降低了技术门槛,还为企业提供了更强大的数据支持,无论是在金融、电商还是物联网领域,都将发挥巨大作用。
176 6
|
SQL 关系型数据库 MySQL
实时计算 Flink版操作报错合集之从mysql读数据写到hive报错,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
SQL DataWorks 监控
DataWorks产品使用合集之同步数据到Hive时,如何使用业务字段作为分区键
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
SQL 数据采集 存储
Hive实战 —— 电商数据分析(全流程详解 真实数据)
关于基于小型数据的Hive数仓构建实战,目的是通过分析某零售企业的门店数据来进行业务洞察。内容涵盖了数据清洗、数据分析和Hive表的创建。项目需求包括客户画像、消费统计、资源利用率、特征人群定位和数据可视化。数据源包括Customer、Transaction、Store和Review四张表,涉及多个维度的聚合和分析,如按性别、国家统计客户、按时间段计算总收入等。项目执行需先下载数据和配置Zeppelin环境,然后通过Hive进行数据清洗、建表和分析。在建表过程中,涉及ODS、DWD、DWT、DWS和DM五层,每层都有其特定的任务和粒度。最后,通过Hive SQL进行各种业务指标的计算和分析。
2699 1
Hive实战 —— 电商数据分析(全流程详解 真实数据)
|
SQL 关系型数据库 HIVE
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。