5分钟迅速搭建云上Lambda大数据分析架构

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 主要介绍基于 Tablestore 的数据变更实时捕获订阅能力,实现云上Lambda 架构的轻量化实现数据的实时和离线处理。演示模拟了一个电商订单场景,通过流计算实现订单大屏的场景,做到海量订单实时注入的同时,进行10s的订单统计聚合以及交易金额统计并做实时的大屏幕展示

作者:朱晓然,Tablestore存储服务技术专家


背景
Spark 中国社区联合阿里云 EMR 技术交流群,Tablestore 技术交流群举办了一场联合技术直播。直播的话题是“海量结构化数据的实时计算和处理”,主要介绍基于 Tablestore 的数据变更实时捕获订阅能力,实现云上Lambda 架构的轻量化实现。在直播中有一个demo环节,本篇文章会提供demo环节的简单操作步骤,方便大家后续在阿里云上搭建和demo场景类似的一整套架构,实现数据的实时和离线处理。

演示场景介绍
演示模拟了一个电商订单场景,通过流计算实现订单大屏的场景,做到海量订单实时注入的同时,进行10s的订单统计聚合以及交易金额统计并做实时的大屏幕展示。整个订单的大屏幕样例如下:
image.png

大屏我们使用阿里云的 DATAV 对接 Tablestore数据源来实现,那么下面我们就具体看看从订单的原始数据到结果大屏数据的产生过程以及操作步骤。

整套后台的架构大体如下:
image.png

  1. 在ecs,或者本地模拟一个订单生成器,实时的注入订单数据到 Tablestore 中。
  2. 在 Tablestore 控制台创建通道
  3. 在 EMR 控制台购买 Spark 集群
  4. 下载最新的 EMR SDK
  5. 执行下面提供的建表语句和SQL命令实现实时计算,结果表会写回 Tablestore中。
  6. 通过 DATAV 进行实时大屏展示结果表数据

操作步骤一:登陆阿里云官网 Tablestore 控制台进行实例和表创建
image.png

创建实例后,可以创建一张表,表主键schema如下:
image.png

启动客户端注入程序随机写入数据,样例数据如下:
image.png

Tablestore 产品是 Serverless的形态,用户使用无需购买大小或者规格,产品回根据业务做自动水平扩展。

操作步骤二:登陆阿里云官网 EMR 控制台购买Spark集群
Spark的集群规模可以根据业务需求灵活选取,我们实测三节点,可以轻松的实时消费100w/s的数据做聚合计算哟!
image.png

操作步骤三:登陆EMR集群执行作业脚本
登陆EMR的master节点,执行下面命令启动流任务:

1.启动stream sql交互
在EMR 官网获取最新版本EMR sdk(1.8)
streaming-sql --driver-class-path emr-datasources_shaded_2.11-1.8.0.jar --jars emr-datasources_shaded_2.11-1.8.0.jar --master yarn-client --num-executors 8 --executor-memory 2g --executor-cores 2

2.创建streaming source 表
DROP TABLE IF EXISTS ots_order_test;
CREATE TABLE ots_order_test
USING tablestore
OPTIONS(
endpoint="填写Tablestore VPC的地址",
access.key.id="",
access.key.secret="",
instance.name="",
table.name="",
tunnel.id="在Tablestore控制台查找对应想消费通道ID",
catalog='{"columns": {"UserId": {"col": "UserId", "type": "string"}, "OrderId": {"col": "OrderId", "type": "string"},"price": {"cols": "price", "type": "long"}, "timestamp": {"cols": "timestamp", "type": "long"}}}'
);

3.创建streaming sink表
DROP TABLE IF EXISTS ots_order_sink_test;
CREATE TABLE ots_order_sink_test
USING tablestore
OPTIONS(
endpoint="",
access.key.id="",
access.key.secret="",
instance.name="",
table.name="",
tunnel.id="",
catalog='{"columns": {"begin": {"col": "begin", "type": "string"},"end": {"col": "end", "type": "string"}, "count": {"col": "count", "type": "long"}, "totalPrice": {"col": "totalPrice", "type": "long"}}}'
);

4.创建Streaming作业
CREATE SCAN ots_table_stream on ots_order_test USING STREAM OPTIONS ("maxoffsetsperchannel"="10000");
CREATE STREAM job1
options(
checkpointLocation='/tmp/spark/cp/test1',
outputMode='update'
)
insert into ots_order_sink_test
SELECT CAST(window.start AS String) AS begin, CAST(window.end AS String) AS end, count(*) AS count, sum(price) AS totalPrice FROM ots_table_stream GROUP BY window(to_timestamp(timestamp / 1000000000), "10 seconds");

最后实验有任何问题,或者希望做技术交流的同学欢迎加入我们的技术交流群(钉钉:23307953 或者11789671),来与我们一起探讨。
原文链接:https://yq.aliyun.com/articles/721294

image.png

阿里巴巴开源大数据技术团队成立Apache Spark中国技术社区,定期推送精彩案例,技术专家直播,问答区数个Spark技术同学每日在线答疑,只为营造纯粹的Spark氛围,欢迎钉钉扫码加入!
二维码.JPG

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
5天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
26 2
|
8天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
48 14
|
13天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
46 2
|
15天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
15天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
18天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
21天前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
48 0
|
5天前
|
缓存 负载均衡 JavaScript
探索微服务架构下的API网关模式
【10月更文挑战第37天】在微服务架构的海洋中,API网关犹如一座灯塔,指引着服务的航向。它不仅是客户端请求的集散地,更是后端微服务的守门人。本文将深入探讨API网关的设计哲学、核心功能以及它在微服务生态中扮演的角色,同时通过实际代码示例,揭示如何实现一个高效、可靠的API网关。
|
4天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
4天前
|
Dubbo Java 应用服务中间件
服务架构的演进:从单体到微服务的探索之旅
随着企业业务的不断拓展和复杂度的提升,对软件系统架构的要求也日益严苛。传统的架构模式在应对现代业务场景时逐渐暴露出诸多局限性,于是服务架构开启了持续演变之路。从单体架构的简易便捷,到分布式架构的模块化解耦,再到微服务架构的精细化管理,企业对技术的选择变得至关重要,尤其是 Spring Cloud 和 Dubbo 等微服务技术的对比和应用,直接影响着项目的成败。 本篇文章会从服务架构的演进开始分析,探索从单体项目到微服务项目的演变过程。然后也会对目前常见的微服务技术进行对比,找到目前市面上所常用的技术给大家进行讲解。
14 1
服务架构的演进:从单体到微服务的探索之旅