DL框架之MXNet :神经网络算法简介之MXNet 常见使用方法总结(神经网络DNN、CNN、RNN算法)之详细攻略(个人使用)

简介: DL框架之MXNet :神经网络算法简介之MXNet 常见使用方法总结(神经网络DNN、CNN、RNN算法)之详细攻略(个人使用)

MXNet 常见使用方法


1、关于GPU、CPU运算


1、目前MxNet支持相同平台下的变量运算,如果一个变量在GPU一个变量在CPU,则需要通过copyto之类的方式来统一。

MxNet中,可以通过gpu_device=mx.gpu()来创建GPU的context。下边的方式是切换到GPU上执行运算。


gpu_device=mx.gpu() # Change this to mx.cpu() in absence of GPUs.

def f():

   a = mx.nd.ones((100,100))

   b = mx.nd.ones((100,100))

   c = a + b

   print(c)

# in default mx.cpu() is used

f()

# change the default context to the first GPU

with mx.Context(gpu_device):

   f()

2、参数同步:当我们使用多个GPU来训练模型时,gluon.Trainer会自动做数据并行,例如划分小批量数据样本并复制到各个GPU上,对各个GPU上的梯度求和再广播到所有GPU上。这样,我们就可以很方便地实现训练函数了。


loss = gloss.SoftmaxCrossEntropyLoss()

def train(num_gpus, batch_size, lr):

   train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)

   ctx = [mx.gpu(i) for i in range(num_gpus)]

   print('running on:', ctx)

   net.initialize(init=init.Normal(sigma=0.01), ctx=ctx, force_reinit=True)  # 网络初始化于各个设备

   trainer = gluon.Trainer(

       net.collect_params(), 'sgd', {'learning_rate': lr})  # 优化器会自动识别net对象的设备列表

   for epoch in range(1, 6):

       start = time()

       for X, y in train_iter:

           gpu_Xs = gutils.split_and_load(X, ctx)  # 数据划分到各个设备

           gpu_ys = gutils.split_and_load(y, ctx)

           with autograd.record():

               ls = [loss(net(gpu_X), gpu_y) for gpu_X, gpu_y in zip(

                   gpu_Xs, gpu_ys)]  # 记录各个设备的损失函数

           for l in ls:

               l.backward()  # 各个设备分别反向传播

           trainer.step(batch_size)  # 优化时自动同步各个设备参数

       nd.waitall()

       print('epoch %d, training time: %.1f sec'%(epoch, time() - start))

       test_acc = gb.evaluate_accuracy(test_iter, net, ctx[0])

       print('validation accuracy: %.4f'%(test_acc))

train(num_gpus=2, batch_size=512, lr=0.3)



参考文章

『MXNet』第七弹_多GPU并行程序设计



MXNet 常见进阶使用方法


后期继续更新……


1、CNN算法


executor = sym.simple_bind(ctx = mx.cpu(), **input_shapes)  

executor.forward()    #前向运行

excutor.backward()    #后向运行

executor.outputs[0].asnumpy()

sym.simple_bind方法




MXNet 常见高阶使用方法


后期继续更新……







相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
1
1
0
1044
分享
相关文章
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
67 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
130 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
71 11
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
115 0
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
892 1
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度剖析深度神经网络(DNN):原理、实现与应用
本文详细介绍了深度神经网络(DNN)的基本原理、核心算法及其具体操作步骤。DNN作为一种重要的人工智能工具,通过多层次的特征学习和权重调节,实现了复杂任务的高效解决。文章通过理论讲解与代码演示相结合的方式,帮助读者理解DNN的工作机制及实际应用。
【神经网络】基于对抗神经网络的图像生成是如何实现的?
对抗神经网络,尤其是生成对抗网络(GAN),在图像生成领域扮演着重要角色。它们通过一个有趣的概念——对抗训练——来实现图像的生成。以下将深入探讨GAN是如何实现基于对抗神经网络的图像生成的
96 3
探索操作系统的心脏:内核与用户空间的奥秘云计算与网络安全:技术挑战与未来趋势深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第29天】在数字世界的每一次点击与滑动背后,都隐藏着一个不为人知的故事。这个故事关于操作系统——计算机的灵魂,它如何协调硬件与软件,管理资源,并确保一切运行得井井有条。本文将带你走进操作系统的核心,揭示内核与用户空间的秘密,展现它们如何共同编织出我们日常数字生活的底层结构。通过深入浅出的讲解和代码示例,我们将一同解锁操作系统的神秘面纱,理解其对现代计算的重要性。 【8月更文挑战第29天】本文将深入探讨卷积神经网络(CNN)的基本原理和结构,以及它们如何被广泛应用于图像识别任务中。我们将通过代码示例来展示如何使用Python和TensorFlow库构建一个简单的CNN模型,并训练
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
246 10

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等