前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。

人工智能和神经网络已经越来越多地应用在现代的 Web 开发中,而前端开发者们现在也有了工具可以使用这些先进的技术。在 JavaScript 的生态系统中,Brain.js 是一个非常友好的选择,可以帮助开发者快速入门并了解基础的神经网络概念。本文将详细介绍如何使用 Brain.js 实现不同类型的神经网络,并对比各类神经网络的特点和适用场景,包括 前馈神经网络(FFNN)循环神经网络(RNN)深度神经网络(DNN) 以及其他的神经网络类型。

好吧,我又挖坑了

为什么选择 Brain.js?

Brain.js 是一个非常轻量且易用的 JavaScript 神经网络库,专为 JavaScript 开发者打造,使得你可以直接在浏览器或 Node.js 环境中实现简单的神经网络。这意味着前端开发者们无需精通复杂的深度学习框架,就能轻松实现和使用一些基础的神经网络功能。Brain.js Github

Brain.js 的优点

  • 易用性:Brain.js 提供了简单的 API,让新手开发者可以迅速上手,理解神经网络的基本原理。
  • 轻量级:相比于 TensorFlow.js 等框架,Brain.js 的功能更聚焦,更适合快速原型开发。
  • 全栈支持:可以在前端或后端(Node.js)环境中运行,便于集成到各种 Web 应用中。

基础准备-一个html文件

<html lang="en">

<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Brain.js XOR Demo</title>
</head>

<body>
  <!-- 引入 Brain.js 库 -->
  <script src="https://cdn.jsdelivr.net/npm/brain.js"></script>
  <script> 
    // 后面的代码放这里
    const net = new brain.recurrent.LSTM();

  </script>
</body>

</html>

这样就有个全局变量brain! - 注意jsdelivr国内可能不稳,可以搜索brain.js去git下载构建好的版本放本地

1. 前馈神经网络 (Feedforward Neural Network, FFNN)

前馈神经网络 (FFNN) 是一种最基本、最常见的神经网络类型。在这种网络中,信息从输入层经过若干隐藏层传递到输出层,而每一层的神经元与下一层的所有神经元相连。这种网络是“前馈”的,即数据只向前流动,没有循环或反馈。

实现 FFNN 的示例

下面是一个使用 Brain.js 实现逻辑异或(XOR)问题的例子,这是经典的前馈神经网络问题之一。

const net = new brain.NeuralNetwork();

// 训练 XOR 数据集
net.train([
  {
    input: [0, 0], output: [0] },
  {
    input: [0, 1], output: [1] },
  {
    input: [1, 0], output: [1] },
  {
    input: [1, 1], output: [0] }
]);

// 测试
const output = net.run([1, 0]);  // 预计输出接近 1
console.log(`Output for [1, 0]: ${
     output}`);

应用场景

  • 分类和回归任务,例如预测用户行为、分类简单的图像数据。

2. 深度神经网络 (Deep Neural Network, DNN)

深度神经网络 (DNN) 是前馈神经网络的扩展版本,通过增加更多的隐藏层来提高模型的学习能力和表现力。DNN 可以看作是 FFNN 的一个更复杂、更深的版本,能够处理复杂的数据关系。

在 Brain.js 中,实现 DNN 的过程与 FFNN 非常相似,但它增加了更多的隐藏层来学习更复杂的模式。

Brain.js 支持的 DNN 示例

const net = new brain.NeuralNetwork({
   
  hiddenLayers: [3, 3] // 可以通过增加隐藏层的数量和神经元来加深网络
});

// 训练 XOR 数据集
net.train([
  {
    input: [0, 0], output: [0] },
  {
    input: [0, 1], output: [1] },
  {
    input: [1, 0], output: [1] },
  {
    input: [1, 1], output: [0] }
]);

// 测试
const output = net.run([1, 1]);  // 预计输出接近 0
console.log(`Output for [1, 1]: ${
     output}`);

应用场景

  • 更复杂的预测和分类任务,例如识别复杂的模式或者有大量特征的数据。

3. 循环神经网络 (Recurrent Neural Network, RNN) - LSTM

循环神经网络 (RNN) 是一种能够处理序列数据的神经网络。与前馈神经网络不同,RNN 的输出不仅依赖于当前输入,还依赖于之前的隐藏状态,因此特别适合处理时间序列数据文本生成等任务。

Brain.js 提供了基于 RNN 的 LSTM(长短期记忆)实现,用来解决传统 RNN 的“长依赖问题”。

RNN 的实现示例

const net = new brain.recurrent.LSTM();

// 训练数据集
net.train([
  'Hello there',
  'How are you?',
  'Hello world',
  'Good morning'
]);

// 测试模型
const output = net.run('Hello');
console.log(`Predicted continuation: ${
     output}`);

这个用时会比较久一点点哈,一分钟吧~ 因为刷先训练模型、然后再预测 - 不只是像之前的例子中只预测

image.png

应用场景

  • 自然语言处理,如聊天机器人和文本生成。
  • 时间序列预测,例如股市预测和传感器数据分析。

4. 卷积神经网络 (Convolutional Neural Network, CNN)

卷积神经网络 (CNN) 通常用于图像数据的处理。它的特点是通过卷积操作提取输入数据的局部特征,特别适合处理具有空间结构的数据,例如图像和视频。

然而,Brain.js 目前不直接支持卷积神经网络。这是因为 CNN 通常计算量较大,适合使用 GPU 来加速,而 Brain.js 主要用于轻量的、基础的神经网络实现。如果你想在 JavaScript 中实现 CNN,可以使用 TensorFlow.js,它提供了更丰富的 API 来支持图像处理任务。

在前端中使用 CNN 的替代方案

  • TensorFlow.js:如果你想在前端实现 CNN,可以选择 TensorFlow.js。它提供了灵活的 API,可以实现卷积层、池化层等 CNN 中常见的操作。
  • 预处理和推断:可以在前端进行一些图像预处理,再将数据发送到后端的 CNN 模型进行推断,这样可以减小前端的计算负担。

不同类型的神经网络对比

神经网络类型 特点 适合场景 Brain.js 支持情况
前馈神经网络 (FFNN) 输入到输出,无循环 分类和回归任务 支持:brain.NeuralNetwork
深度神经网络 (DNN) 多隐藏层,学习复杂数据关系 复杂的预测和分类 支持,通过增加隐藏层数量
循环神经网络 (RNN) 序列依赖,可记住过去的状态 时序数据、文本处理 支持:brain.recurrent.LSTM
卷积神经网络 (CNN) 适合处理空间数据,提取局部特征 图像处理、视频分析 不直接支持,推荐使用 TensorFlow.js

总结

Brain.js 是一个轻量级的 JavaScript 库,非常适合初学者了解和实践神经网络的基础概念。在 Brain.js 中,你可以通过几行代码来实现前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN),以解决不同类型的任务。

  • FFNN 和 DNN:适合分类和回归任务,在 Brain.js 中非常容易实现,适合基础的应用和学习。
  • RNN:通过 Brain.js 的 LSTM,可以处理简单的文本序列任务,非常适合初步了解时间序列建模的开发者。
  • CNN:虽然 Brain.js 不直接支持 CNN,但你可以通过 TensorFlow.js 在前端实现图像处理相关的任务。

对于前端开发者来说,使用 Brain.js 来学习和实现神经网络,是迈向人工智能的第一步。通过这些简单的神经网络模型,你可以为自己的 Web 应用增添智能化的特性,提升用户体验。从最简单的逻辑异或,到自然语言处理的文本生成,Brain.js 都能让你轻松上手,开始探索 AI 的世界。

希望这篇文章能帮助你更好地理解和比较不同类型的神经网络,并鼓励你将这些知识应用到你的前端项目中!

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
4天前
|
JSON 移动开发 JavaScript
在浏览器执行js脚本的两种方式
【10月更文挑战第20天】本文介绍了在浏览器中执行HTTP请求的两种方式:`fetch`和`XMLHttpRequest`。`fetch`支持GET和POST请求,返回Promise对象,可以方便地处理异步操作。`XMLHttpRequest`则通过回调函数处理请求结果,适用于需要兼容旧浏览器的场景。文中还提供了具体的代码示例。
在浏览器执行js脚本的两种方式
|
5天前
|
存储 缓存 网络协议
计算机网络常见面试题(二):浏览器中输入URL返回页面过程、HTTP协议特点,GET、POST的区别,Cookie与Session
计算机网络常见面试题(二):浏览器中输入URL返回页面过程、HTTP协议特点、状态码、报文格式,GET、POST的区别,DNS的解析过程、数字证书、Cookie与Session,对称加密和非对称加密
|
7天前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
16 1
|
9天前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
2天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
8天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
22天前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
|
22天前
|
JavaScript 前端开发 程序员
前端学习笔记——node.js
前端学习笔记——node.js
34 0
|
22天前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。
|
22天前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。